References
1. Brubacher, LJ., & Glick,BR.
((1974)).
The inhibition of papain by N-ethylmaleimide..
Biochemistry
13.
915
- 920.
2. Glick, BR., & Brubacher,LJ.
((1974)).
Evidence for non-productive binding subsites within the active site of papain..
Canadian Journal of Biochemistry
52.
877
- 883.
3. Glick, BR., & Brubacher,LJ.
((1977)).
The chemical and kinetic consequences of the modification of papain by N-bromosuccinimide..
Canadian Journal of Biochemistry
55.
424
- 432.
4. Glick, BR., & Ganoza,MC.
((1975)).
Identification of a soluble protein that stimulates peptide bond synthesis..
Proceedings of the National Academy of Sciences
72.
4257
- 4260.
5. Glick, BR., & Ganoza,MC.
((1976)).
Characterization and site of action of a soluble protein that stimulates peptide bond synthesis..
European Journal of Biochemistry
71.
483
- 491.
6. Mudryi, V., Peske, F., & Rodnina,M.
((2023)).
Translation factor accelerating peptide bond formation on the ribosome: EF-P and eIF5A as entropic catalysts and potential drug targets..
BBA Advances
3.
100074.
7. Glick, BR., Martin, WG., Giroux, JJ., & Williams,RE.
((1979)).
The interaction of polymeric viologens with hydrogenases from Desulfovibrio desulfuricans and Clostridium pasteurianum..
Canadian Journal of Biochemistry
57.
1093
- 1098.
8. Glick, BR., Wang, PY., Schneider, H., & Martin,WG.
((1980)).
Identification and partial characterization of an Escherichia coli mutant with altered hydrogenase activity..
Canadian Journal of Biochemistry
58.
361
- 367.
9. Glick, BR., Martin, WG., Giroux, JJ., & Williams,RE.
((1979)).
The interaction of polymeric viologens with hydrogenases from Desulfovibrio desulfuricans and Clostridium pasteurianum..
Canadian Journal of Biochemistry
57.
1093
- 1098.
10. Glick, BR., Wang, PY., Schneider, H., & Martin,WG.
((1980)).
Identification and partial characterization of an Escherichia coli mutant with altered hydrogenase activity..
Canadian Journal of Biochemistry
58.
361
- 367.
11. Glick, BR., Martin, WG., & Martin,SM.
((1980)).
Purification and properties of the periplasmic hydrogenase from Desulfovibrio desulfuricans..
Canadian Journal of Microbiology
26.
1214
- 1223.
12. Glick, BR., Zeisler, J., Banaszuk, AM., Friesen, JD., & Martin,WG.
((1981)).
The identification and partial characterization of a plasmid containing the gene for the membrane-associated hydrogenase from Escherichia coli..
Gene
15.
201
- 206.
13. See, YP., & Glick,BR.
((1982)).
Analysis of the expression of cloned genes using an Escherichia coli cell-free system..
Canadian Journal of Biochemistry
60.
1095
- 1100.
14. Banaszuk, AM., Deugau, KV., Sherwood, J., Michalak, M., & Glick,BR.
((1983)).
An efficient method for the sequence analysis of oligodeoxyribonucleotides..
Analytical Biochemistry
128.
281
- 286.
15. Pulleyblank, D., Michalak, M., Daisley, St L., & Glick,BR.
((1983)).
A method for the purification of E. coli DNA by homogeneous lysis and polyethylene glycol precipitation..
Molecular Biology Reports
9.
191
- 195.
16. Tan, LUL., & Glick,BR.
((1987)).
A rapid method for analyzing the ligation products of synthetic oligodeoxyribonucleotides..
Molecular Biology Reports
12.
285
- 289.
17. Nimmo, HG., Fontaine, V., Hartwell, J., Jenkins, GI., Nimmo, GA., & Wilkins,MB.
((2001)).
PEP carboxylase kinase is a novel protein kinase controlled at the level of expression..
New Phytologist
151.
91
- 97.
18. Penrose, DM., & Glick,BR.
((1986)).
Production of antibodies against sorghum leaf phosphoenolpyruvate carboxylase monomer and their use in monitoring phosphoenolpyruvate carboxylase levels in sorghum tissues..
Biochemistry and Cell Biology
64.
1234
- 1241.
19. Lem, NW., Penrose, DM., & Glick,BR.
((1986)).
Partial purification and characterization of phosphoenolpyruvate carboxylase from the cyanobacterium, Anabaena variabilis..
Biochemistry and Cell Biology
64.
427
- 433.
20. Harrington, TR., Glick, BR., & Lem,NW.
((1986)).
Molecular cloning of the phosphoenolpyruvate carboxylase gene from Anabaena variabilis..
Gene
45.
113
- 116.
21. Abergel, EA., & Glick,BR.
((1988)).
Tissue specific expression of phosphoenolpyruvate carboxylase in sorghum..
Biochemistry and Cell Biology
66.
1287
- 1294.
22. Ghosh, S., Gepstein, S., Glick, BR., Heikkila, JJ., & Dumbroff,EB.
((1989)).
Thermal regulation of phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase in C3 and C4 plants native to warm and cool climates..
Plant Physiology
90.
1298
- 1304.
23. Majumdar, S., Ghosh, S., Glick, BR., & Dumbroff,EB.
((1991)).
Activity of chlorophyllase, phosphoenol pyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase in soybean seedlings during senescence and drought stress..
Physiologia Plantarum
81.
473
- 480.
24. Khayat, E., Dumbroff, EB., & Glick,BR.
((1991)).
The synthesis of phosphoenolpyruvate carboxylase in imbibing sorghum seeds..
Biochemistry and Cell Biology
69.
141
- 145.
25. Glick, BR., Pasternak, JJ., & Brooks,HE.
((1986a)).
The development of Azotobacter as a bacterial fertilizer by the introduction of exogenous cellulase genes, in: Moo-Young M, Hasnain SE, Lamptey J, Biotechnology and Renewable Energy..
125
- 134.
26. Glick, BR., Brooks, HE., & Pasternak,JJ.
((1986b)).
Physiological effects of the transformation of Azotobacter vinelandii by plasmid DNA..
Canadian Journal of Microbiology
32.
145
- 148.
27. Glick, BR., Butler, B., Mayfield, CI., & Pasternak,JJ.
((1989)).
Effect of the transformation of Azotobacter vinelandii with the low copy number plasmid pRK290..
Current Microbiology
19.
143
- 146.
28. Renaud, C., Pasternak, JJ., & Glick,BR.
((1989)).
Integration of exogenous DNA into the genome of Azotobacter vinelandii..
Archives of Microbiology
152.
437
- 440.
29. Glick,BR.
((1995)).
Metabolic load and heterologous gene expression..
Biotechnology Advances
13.
247
- 261.
30. Hong, Y., Pasternak, JJ., & Glick,BR.
((1995)).
Overcoming the metabolic load associated with the presence of plasmid DNA in the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2..
Canadian Journal of Microbiology
41.
624
- 628.
31. Wolff, BR., Mudry, TA., Glick, BR., & Pasternak,JJ.
((1986)).
Isolation of endoglucanase genes from Pseudomonas fluorescens subsp. cellulosa and Pseudomonas sp..
Applied and Environmental Microbiology
51.
1367
- 1369.
32. Glick, BR., & Pasternak,JJ.
((1989)).
Isolation, characterization and manipulation of cellulase genes..
Biotechnology Advances
7.
361
- 386.
33. Wolff, BR., Glick, BR., & Pasternak,JJ.
((1990)).
Sequence characterization of endoglucanase genes from Pseudomonas fluorescens subsp. cellulosa and Pseudomonas sp..
Journal of Industrial Microbiology
6.
285
- 290.
34. Sauer, T., Robinson, CW., & Glick,BR.
((1989)).
Disruption of native and recombinant Escherichia coli in a high-pressure homogenizer..
Biotechnology and Bioengineering
33.
1330
- 1342.
35. Whitney, GK., Glick, BR., & Robinson,CW.
((1989)).
Induction of T4 DNA ligase in a recombinant strain of Escherichia coli..
Biotechnology and Bioengineering
33.
991
- 998.
36. Grund, G., Robinson, CW., & Glick,BR.
((1990)).
Cross-flow ultrafiltration of proteins, in: White MD, Reuveny S, Shafferman A, Biologicals from Recombinant Microorganisms and Animal Cells: Production and Recovery..
69
- 83.
37. Grund, G., Robinson, CW., & Glick,BR.
((1992)).
Protein type effects on steady-state cross-flow membrane ultrafiltration fluxes and protein transmission..
Journal of Membrane Science
70.
177
- 192.
38. Robinson, CW., Siegel, MH., Condemine, A., Fee, C., Fahidy, TZ., & Glick,BR.
((1993)).
Pulsed-electric-field cross-flow ultrafiltration of bovine serum albumin..
Journal of Membrane Science
80.
209
- 220.
39. White, MD., Glick, BR., & Robinson,CW.
((1994)).
Bacterial, yeast and fungal cultures: The effect of microorganism type and culture characteristics on bioreactor design and operation, in: Asenjo JA, Merchuk JC, Bioreactor System Design..
47
- 87.
40. Donovan, RS., Robinson, CW., & Glick,BR.
((1995)).
An inexpensive system to provide sparged aeration to shake flask cultures..
Biotechnology Techniques
9.
665
- 670.
41. Donovan, RS., Robinson, CW., & Glick,BR.
((1996)).
Expression of foreign proteins under the control of the lac promoter..
Journal of Industrial Microbiology
16.
145
- 154.
42. Sun, X., Griffith, M., Pasternak, JJ., & Glick,BR.
((1995)).
Identification and characterization of antifreeze protein activity from the plant growthpromoting rhizobacterium Pseudomonas putida GR12-2..
Canadian Journal of Microbiology
41.
776
- 784.
43. Xu, H., Griffith, M., Patten, CL., & Glick,BR.
((1998)).
Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2..
Canadian Journal of Microbiology
44.
64
- 73.
44. Kawahara, H., Li, J., Griffith, M., & Glick,BR.
((2001)).
Relationship between antifreeze protein and freezing resistance in Pseudomonas putida GR12-2..
Current Microbiology
43.
365
- 370.
45. Muryoi, N., Kawahara, H., Obata, H., Griffith, M., & Glick,BR.
((2004)).
Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2..
Journal of Bacteriology
186.
5661
- 5671.
46. Glick, BR., & Pasternak,JJ.
((1994)).
Molecular Biotechnology.
47. Klee, HJ., Hayford, MB., Kretzmer, KA., Barry, GF., & Kishore,GM.
((1991)).
Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants..
Plant Cell
3.
1187
- 1193.
48. Sheehy, RE., Honma, M., Yamara, M., Sasaki, T., Martineau, B., & Hiatt,WR.
((1991)).
Isolation, sequence, and expression in Escherichia coli of the Pseudomonas sp. strain ACP gene encoding 1-aminocyclopropane-1-carboxylate deaminase..
Journal of Bacteriology
173.
5260
- 5265.
49. Jacobson, CB., Pasternak, JJ., & Glick,BR.
((1994)).
Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2..
Canadian Journal of Microbiology
40.
1019
- 1025.
50. Glick, BR., Jacobson, CB., Schwarze, MMK., & Pasternak,JJ.
((1994)).
1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation..
Canadian Journal of Microbiology
40.
911
- 915.
51. Li, J., Ovakim, D., Charles, TC., & Glick,BR.
((2000)).
An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation..
Current Microbiology
41.
101
- 105.
52. Glick, BR., Karaturovíc, D., & Newell,P.
((1995)).
A novel procedure for rapid isolation of plant growth-promoting rhizobacteria..
Canadian Journal of Microbiology
41.
533
- 536.
53. Glick, BR., Penrose, DM., & Li,J.
((1998)).
A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria..
Journal of Theoretical Biology
190.
63
- 68.
54. Abeles, FB., Morgan, PW., & Saltveit,ME.
((1992)).
Ethylene in Plant Biology..
55. Burd, GI., Dixon, DG., & Glick,BR.
((1998)).
A plant growth promoting bacterium that decreases nickel toxicity in plant seedlings..
Applied and Environmental Microbiology
64.
3663
- 3668.
56. Burd, GI., Dixon, DG., & Glick,BR.
((2000)).
Plant growth-promoting bacteria that decrease heavy metal toxicity in plants..
Canadian Journal of Microbiology
46.
237
- 245.
57. Nie, L., Shah, S., Burd, GI., Dixon, DG., & Glick,BR.
((2002)).
Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2..
Plant Physiology and Biochemistry
40.
355
- 361.
58. Huang, XD., El-Alawi, Y., Penrose, DM., Glick, BR., & Greenberg,BM.
((2004)).
Multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils..
Environmental Pollution
130.
465
- 476.
59. Glick,BR.
((2003)).
Phytoremediation: Synergistic use of plants and bacteria to clean up the environment..
Biotechnology Advances
21.
383
- 393.
60. Saleh, S., Huang, XD., Greenberg, BM., & Glick,BR.
((2004)).
Phytoremediation of persistent organic contaminants in the environment, in: Singh A, Ward O, Soil Biology (vol. 1): Applied Bioremediation and Phytoremediation..
115
- 134.
61. Huang, XD., El-Alawi, Y., Penrose, DM., Glick, BR., & Greenberg,BM.
((2004)).
Responses of plants to creosote during phytoremediation and their significance for remediation processes..
Environmental Pollution
130.
453
- 463.
62. Glick, BR., & Stearns,JC.
((2011)).
Making phytoremediation work better: Maximizing a plant’s growth potential in the midst of adversity..
International Journal of Phytoremediation
13.
4
- 16.
63. Stearns, JC., Shah, S., Dixon, DG., Greenberg, BM., & Glick,BR.
((2005)).
Tolerance of transgenic canola expressing 1-aminocyclopropanecarboxylic acid deaminase to growth inhibition by nickel..
Plant Physiology and Biochemistry
43.
701
- 708.
64. Glick,BR.
((2004)).
Teamwork in phytoremediation..
Nature Biotechnology
22.
526
- 527.
65. Gerhardt, K., Greenberg, BM., & Glick,BR.
((2007)).
The role of ACC deaminase in facilitating the phytoremediation of organics, metals and salt..
Current Trends in Microbiology
2.
61
- 73.
66. Gerhardt, KE., Huang, XD., Glick, BR., & Greenberg,BM.
((2009)).
Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges..
Plant Science
176.
20
- 30.
67. Gurska, J., Wang, W., Gerhardt, KE., Khalid, AM., Isherwood, DM., Huang, XD., Glick, BR., & Greenberg,BM.
((2009)).
Field test of a multi-process phytoremediation system at a petroleum sludge contaminated land farm..
Environmental Science and Technology
43.
4472
- 4479.
68. Glick,BR.
((2010)).
Using soil bacteria to facilitate phytoremediation..
Biotechnology Advances
28.
367
- 374.
69. Brígido, C., & Glick,BR.
((2015)).
Phytoremediation using Rhizobia, in: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L, Phytoremediation: Management of Environmental Contaminants (vol. 2)..
95
- 114.
70. Kong, Z., Wu, Z., Glick, BR., He, S., Huang, C., & Wu,L.
((2019)).
Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal-contaminated soils..
Ecotoxicology and Environmental Safety
183.
109504.
71. Gamalero, E., & Glick,BR.
((2024)).
Recent use of plant growth-promoting bacteria to facilitate phytoremediation..
AIMS Microbiology
10.
415
- 448.
72. Farwell, AJ., Vesely, S., Nero, V., Rodriguez, H., Shah, S., Dixon, DG., & Glick,BR.
((2006)).
The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site..
Plant and Soil
288.
309
- 318.
73. Farwell, AJ., Vesely, S., Nero, V., McCormack, K., Rodriguez, H., Shah, S., Dixon, DG., & Glick,BR.
((2007)).
Tolerance of transgenic canola (Brassica napus) amended with ACC deaminase-containing plant growth-promoting bacteria to flooding stress at a metal-contaminated field site..
Environmental Pollution
147.
540
- 545.
74. Wang, C., Knill, E., Glick, BR., & Défago,G.
((2000)).
Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities..
Canadian Journal of Microbiology
46.
898
- 907.
75. Yang, S., Zhang, Q., Guo, J., Chorkowski, AO., Cooksey, DA., Glick, BR., & Yang,CH.
((2007)).
The roles of the indole-3-acetic acid (IAA) biosynthetic gene iaaM on the pleiotrophic phenotypes and pathogenicity of Erwinia chrysanthemi 3937..
Applied and Environmental Microbiology
73.
1079
- 1088.
76. Robison, MM., Shah, S., Tamot, B., Pauls, KP., Moffatt, BA., & Glick,BR.
((2001)).
Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase..
Molecular Plant Pathology
2.
135
- 145.
77. Robison, MM., Griffith, M., Pauls, KP., & Glick,BR.
((2001)).
Dual role of ethylene in susceptibility of tomato to Verticillium wilt..
Journal of Phytopathology
149.
385
- 388.
78. Hao, Y., Charles, TC., & Glick,BR.
((2007)).
ACC deaminase from plant growth-promoting bacteria affects crown gall development..
Canadian Journal of Microbiology
53.
1291
- 1299.
79. Mayak, S., Tirosh, T., & Glick,BR.
((2004a)).
Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper..
Plant Science
166.
525
- 530.
80. Mayak, S., Tirosh, T., & Glick,BR.
((2004b)).
Plant growth-promoting bacteria that confer resistance in tomato to salt stress..
Plant Physiology and Biochemistry
42.
565
- 572.
81. Sergeeva, E., Shah, S., & Glick,BR.
((2006)).
Tolerance of transgenic canola expressing a bacterial ACC deaminase gene to high concentrations of salt..
World Journal of Microbiology and Biotechnology
22.
277
- 282.
82. Cheng, Z., Park, E., & Glick,BR.
((2007)).
deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt..
Canadian Journal of Microbiology
53.
912
- 918.
83. Siddikee, MA., Glick, BR., Chauhan, PS., Yim, WJ., & Sa,T.
((2011)).
Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing ACC deaminase activity..
Plant Physiology and Biochemistry
49.
427
- 434.
84. Yan, J., Smith, MD., Glick, BR., & Liang,Y.
((2014)).
Effects of ACC deaminase-containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress..
Botany
92.
775
- 781.
85. Yaish, MW., Antony, I., & Glick,BR.
((2015)).
Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance..
Antonie van Leeuwenhoek
107.
1519
- 1532.
86. Forni, C., Duca, D., & Glick,BR.
((2017)).
Mechanisms of plant response to salt stress and their alteration by rhizobacteria..
Plant and Soil
410.
335
- 356.
87. Orozco-Mosqueda, MC., Duan, J., DiBernardo, M., Zetter, E., Campos-García, J., Glick, BR., & Santoyo,G.
((2019)).
The production of ACC deaminase and trehalose by the plant growth-promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress..
Frontiers in Microbiology
10.
1392.
88. Orozco-Mosqueda, MC., Glick, BR., & Santoyo,G.
((2020)).
ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt in crops..
Microbiological Research
235.
126439.
89. Gamalero, E., & Glick,BR.
((2022)).
Recent advances in bacterial amelioration of plant drought and salt stress..
Biology
11.
437.
90. Kim, YC., Glick, BR., Bashan, Y., Ryu, CM., & Sharma,AK.
((2018)).
Enhancement of plant tolerance by microbes, in: Aroca R, Plant Responses to Drought Stress: From Morphological to Molecular Features..
383
- 413.
91. Chandra, D., Glick, BR., & Sharma,AK.
((2018)).
Drought tolerant Pseudomonas spp. improves the growth performance of finger millet (Eleusine coracana (L.) Gaertn.) under non-stressed and drought-stressed conditions..
Pedosphere
28.
227
- 240.
92. Ebrahimi-Zarandi, M., Etesami, H., & Glick,BR.
((2023)).
Fostering plant resilience to drought with Actinobacteria: Unveiling perennial allies in drought stress tolerance..
Plant Stress
10.
100242.
93. Hosseini-Moghaddam, M., Moradi, A., Piri, R., Glick, BR., Fazeli-Nasab, B., & Sayyed,RZ.
((2024)).
Seed coating with minerals and PGPB enhances drought tolerance in fennel (Foeniculum vulgare L.)..
Biocatalysis and Agricultural Biotechnology
58.
103202.
94. Ali, S., & Glick,BR.
((2025)).
Bacterial alleviation of drought stress in plants: Recent advances and future challenges, in: Etesami H, Chen Y, Sustainable Agriculture under Drought Stress: Integrated Soil, Water and Nutrient Management..
367
- 383.
95. Chukwudi, UP., Glick, BR., Santoyo, G., Rigobelo, R., & Babalola,OO.
((2024)).
Field application of beneficial microbes to ameliorate drought stress in maize..
Plant and Soil
1
- 20.
96. Jana, GA., Glick, BR., & Yaish,MW.
((2022)).
Salt tolerance in plants: Using OMICS to assess the impact of plant growth-promoting bacteria (PGPB), in: Santoyo G, Kumar A, Aamir M, Sivakumar U, Mitigation of Plant Abiotic Stress by Microorganisms: Applicability and Future Directions..
299
- 320.
97. Grichko, VP., & Glick,BR.
((2001)).
Ethylene and flooding stress in plants..
Plant Physiology and Biochemistry
39.
1
- 9.
98. Grichko, VP., & Glick,BR.
((2001)).
Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter..
Plant Physiology and Biochemistry
39.
19
- 25.
99. Grichko, VP., & Glick,BR.
((2001)).
Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria..
Plant Physiology and Biochemistry
39.
11
- 17.
100. Guinel,FC.
((2015)).
Ethylene, a hormone at the center-stage of nodulation..
Frontiers in Plant Science
6.
1121.
101. Kazmeirczak, T., Yang, L., Boncompagni, E., Meilhoc, E., Frugier, F., Frendo, P., Bruand, C., Gruber, V., & Bourquisse,R.
((2020)).
Legume nodule senescence: A coordinated death mechanism between bacteria and plant cells..
Advances in Botanical Research
94.
181
- 212.
102. Ma, W., Guinel, FC., & Glick,BR.
((2003)).
The Rhizobium leguminosarum bv. viciae ACC deaminase protein promotes the nodulation of pea plants..
Applied and Environmental Microbiology
69.
4396
- 4402.
103. Ma, W., Sebestianova, S., Sebestian, J., Burd, GI., Guinel, F., & Glick,BR.
((2003)).
Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobia spp..
Antonie van Leeuwenhoek
83.
285
- 291.
104. Ma, W., Charles, TC., & Glick,BR.
((2004)).
Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa..
Applied and Environmental Microbiology
70.
5891
- 5897.
105. Li, Q., Saleh-Lakha, S., & Glick,BR.
((2005)).
The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings..
Canadian Journal of Microbiology
51.
511
- 514.
106. Nascimento, F., Brígido, C., Alho, L., Glick, BR., & Oliveira,S.
((2012)).
Enhanced chickpea growth promotion ability of a mesorhizobia expressing an exogenous ACC deaminase gene..
Plant and Soil
353.
221
- 230.
107. Nascimento, FX., Brígido, C., Glick, BR., Oliveira, S., & Alho,L.
((2012)).
Mesorhizobium ciceri LMS-1 expressing an exogenous ACC deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints..
Letters in Applied Microbiology
55.
15
- 21.
108. Nascimento, F., Brígido, C., Glick, BR., & Oliveira,S.
((2012)).
ACC deaminase genes are conserved between Mesorhizobium species able to nodulate the same host plant..
FEMS Microbiology Letters
336.
26
- 37.
109. Nascimento, FX., Brígido, C., Rossi, MJ., & Glick,BR.
((2016)).
The role of rhizobial ACC deaminase in the nodulation process of leguminous plants..
International Journal of Agronomy
2016.
110. Tavares, MJ., Nascimento, FX., Glick, BR., & Rossi,MJ.
((2018)).
The expression of an exogenous ACC deaminase by the endophyte Serratia grimesii BXF1 promotes the early nodulation and growth of common bean..
Letters in Applied Microbiology
66.
252
- 259.
111. Nascimento, FX., Tavares, MJ., Glick, BR., & Rossi,MJ.
((2018)).
Improvement of Cupriavidus taiwanensis nodulation and plant-growth promoting abilities by the expression of an exogenous ACC deaminase gene..
Current Microbiology
75.
961
- 965.
112. Nascimento, FX., Tavares, MJ., Franck, J., Ali, S., Glick, BR., & Rossi,MJ.
((2019)).
ACC deaminase plays a major role in Pseudomonas fluorescens YsS6 ability to promote the nodulation of alpha- and beta-proteobacteria rhizobial strains..
Archives of Microbiology
201.
817
- 822.
113. Hao, Y., Charles, TC., & Glick,BR.
((2010)).
ACC deaminase increases Agrobacterium tumefaciens-mediated transformation frequency of commercial canola cultivars..
FEMS Microbiology Letters
307.
185
- 190.
114. Mayak, S., Tirosh, T., & Glick,BR.
((1999)).
Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings..
Journal of Plant Growth Regulation
18.
49
- 53.
115. Holguin, G., & Glick,BR.
((2003)).
Transformation of Azospirillum brasilense Cd with an ACC deaminase gene from Enterobacter cloacae UW4 fused to the Tetr gene promoter improves its fitness and plant growth-promoting ability..
Microbial Ecology
46.
122
- 133.
116. Tamot, BK., Pauls, KP., & Glick,BR.
((2003)).
Root and hypocotyl growth in transgenic tomatoes that express the bacterial enzyme ACC deaminase..
Journal of Plant Biology
46.
181
- 186.
117. Van Loon, LC., & Glick,BR.
((2004)).
Increased plant fitness by rhizobacteria, in: Sandermann H, Molecular Ecotoxicology of Plants..
177
- 205.
118. Nayani, S., Mayak, S., & Glick,BR.
((1998)).
The effect of plant growth-promoting rhizobacteria on the senescence of flower petals..
Indian Journal of Experimental Biology
36.
836
- 839.
119. Ali, S., Charles, TC., & Glick,BR.
((2012)).
Delay of carnation flower senescence by bacterial endophytes expressing ACC deaminase..
Journal of Applied Microbiology
113.
1139
- 1144.
120. Grichko, VP., & Glick,BR.
((2000)).
Identification of DNA sequences that regulate the expression of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylate deaminase gene..
Canadian Journal of Microbiology
46.
1159
- 1165.
121. Li, J., & Glick,BR.
((2001)).
Transcriptional regulation of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene (acdS)..
Canadian Journal of Microbiology
47.
359
- 367.
122. Saleh, SS., & Glick,BR.
((2001)).
Involvement of gacS and rpoS in transcriptional regulation of the plant growth-promoting bacteria Enterobacter cloacae CAL2 and UW4..
Canadian Journal of Microbiology
47.
698
- 705.
123. Cheng, Z., Duncker, BP., McConkey, BJ., & Glick,BR.
((2008)).
Transcriptional regulation of ACC deaminase gene expression in Pseudomonas putida UW4..
Canadian Journal of Microbiology
54.
128
- 136.
124. Glick, BR., Cheng, Z., Czarny, J., & Duan,J.
((2007)).
Promotion of plant growth by ACC deaminase-containing soil bacteria..
European Journal of Plant Pathology
119.
329
- 339.
125. Duan, J., Jiang, W., Cheng, Z., Heikkila, JJ., & Glick,BR.
((2013)).
The complete genome sequence of the plant growth-promoting bacterium Pseudomonas putida UW4..
PLoS ONE
8.
e58640.
126. Singh, RP., Shelke, GM., Kumar, A., & Jha,PN.
((2015)).
Biochemistry and genetics of ACC deaminase: A weapon to “stress ethylene” produced in plants..
Frontiers in Microbiology
6.
937.
127. Penrose, DM., Moffatt, BA., & Glick,BR.
((2001)).
Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings..
Canadian Journal of Microbiology
47.
77
- 80.
128. Penrose, DM., & Glick,BR.
((2001)).
Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria..
Canadian Journal of Microbiology
47.
368
- 372.
129. Patten, C., & Glick,BR.
((1996)).
Bacterial biosynthesis of indole-3-acetic acid..
Canadian Journal of Microbiology
42.
207
- 220.
130. Patten, CL., & Glick,BR.
((2002)).
The role of bacterial indoleacetic acid in the development of the host plant root system..
Applied and Environmental Microbiology
68.
3795
- 3801.
131. Patten, CL., & Glick,BR.
((2002)).
Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary phase sigma factor RpoS..
Canadian Journal of Microbiology
48.
635
- 642.
132. Montero-Calasanz, MC., Santamaría, C., Albareda, M., Daza, A., Duan, J., Glick, BR., & Camacho,M.
((2013)).
Rooting induction of semi-hardwood olive cuttings by several auxin-producing bacteria..
Spanish Journal of Agricultural Research
11.
146
- 154.
133. Duca, D., Lorv, J., Patten, CL., Rose, D., & Glick,BR.
((2014a)).
Indole-3-acetic acid in plant-microbe interactions..
Antonie van Leeuwenhoek
106.
85
- 125.
134. Duca, D., Rose, D., & Glick,BR.
((2014b)).
Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. UW4 that converts indole-3-acetonitrile to produce indole-3-acetic acid..
Applied and Environmental Microbiology
50.
4640
- 4649.
135. Tabatabaei, S., Ehsanzadeh, P., Etesami, H., Alikhani, HA., & Glick,BR.
((2016)).
Indole-3-acetic acid (IAA) producing Pseudomonas isolates inhibit seed germination and alpha-amylase activity in durum wheat (Triticum turgidum L.)..
Spanish Journal of Agricultural Research
14.
e0802.
136. Duca, D., Rose, DR., & Glick,BR.
((2018)).
Indoleacetic acid overproduction transformants of Pseudomonas sp. UW4..
Antonie van Leeuwenhoek
111.
1645
- 1660.
137. Duca, DR., & Glick,BR.
((2020)).
Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria..
Applied Microbiology and Biotechnology
104.
8607
- 8619.
138. Gamalero, E., Berta, G., Massa, N., Glick, BR., & Lingua,G.
((2008)).
Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth..
FEMS Microbiology Ecology
64.
459
- 467.
139. Gamalero, E., Lingua, G., Berta, G., & Glick,BR.
((2009)).
Beneficial role of plant growth-promoting bacteria and arbuscular fungi on plant responses to heavy metal stress..
Canadian Journal of Microbiology
55.
501
- 514.
140. Gamalero, E., Berta, G., Massa, N., Glick, BR., & Lingua,G.
((2010)).
Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences on the growth of cucumber under salt stress conditions..
Journal of Applied Microbiology
108.
236
- 245.
141. Urón, P., Giachini, AJ., Glick, BR., Rossi, MJ., & Nascimento,FX.
((2018)).
Near-complete genome sequence of Pseudomonas palleroniana MAB3, a beneficial ACC deaminase-producing bacterium able to promote the growth of mushrooms, ectomycorrhiza and plants..
Genome Announcements
6.
e00242
- 18.
142. Santoyo, G., Gamalero, E., & Glick,BR.
((2021)).
Mycorrhizal-bacterial amelioration of plant abiotic and biotic stress..
Frontiers in Sustainable Food Systems
5.
672881.
143. Reed, MLE., & Glick,BR.
((2004)).
Applications of free-living plant growth-promoting rhizobacteria..
Antonie van Leeuwenhoek
86.
1
- 25.
144. Reed, MLE., & Glick,BR.
((2013)).
Applications of plant growth-promoting bacteria for plant and soil systems, in: Gupta VK, Schmoll M, Maki M, Tuohy M, Mazutti MA, Applications of Microbial Engineering..
181
- 229.
145. Lucy, M., Reed, E., & Glick,BR.
((2004)).
Applications of free-living plant growth-promoting rhizobacteria..
Antonie van Leeuwenhoek
86.
1
- 25.
146. Reed, MLE., & Glick,BR.
((2023)).
The recent use of plant growth-promoting bacteria to promote the growth of agricultural food crops..
Agriculture
13.
1089.
147. Hontzeas, N., Saleh, SS., & Glick,BR.
((2004)).
Changes in gene expression in canola roots by ACC deaminase-containing plant growth-promoting bacteria..
Molecular Plant-Microbe Interactions
17.
865
- 871.
148. Czarny, JC., Shah, S., & Glick,BR.
((2007)).
Response of canola plants at the transcriptional level to expression of a bacterial ACC deaminase in the roots. in: Ramina A, Chang C, Giovannoni J, Klee H, Perata P, Woltering E, Advances in Plant Ethylene Research..
377
- 382.
149. Cheng, Z., Wei, YYC., Sung, WWL., Glick, BR., & McConkey,BJ.
((2009a)).
Proteomic analysis of the response of the plant growth-promoting bacterium Pseudomonas putida UW4 to nickel stress..
Proteome Science
7.
18.
150. Cheng, Z., Woody, OZ., Song, J., Glick, BR., & McConkey,BJ.
((2009b)).
Proteome reference map for the plant growth-promoting bacterium Pseudomonas putida UW4..
Proteomics
9.
1
- 4.
151. Cheng, Z., McConkey, BJ., & Glick,BR.
((2010)).
Proteomic studies of plant-bacterial interactions..
Soil Biology and Biochemistry
42.
1673
- 1684.
152. Cheng, Z., Woody, OZ., Glick, BR., & McConkey,BJ.
((2010)).
Characterization of plant-bacterial interactions using proteomic approaches..
Current Proteomics
7.
244
- 257.
153. Cheng, Z., Woody, OZ., McConkey, BJ., & Glick,BR.
((2012)).
Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome..
Applied Soil Ecology
61.
255
- 263.
154. Li, J., Sun, J., Yang, Y., Guo, S., & Glick,BR.
((2012)).
Identification of hypoxic-responsive proteins in cucumber using a proteomic approach..
Plant Physiology and Biochemistry
51.
74
- 80.
155. Li, J., McConkey, BJ., Cheng, Z., Guo, S., & Glick,BR.
((2013)).
Identification of plant growth-promoting rhizobacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach..
Journal of Proteomics
84.
119
- 131.
156. Sun, Y., Cheng, Z., & Glick,BR.
((2009)).
The role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase in plant growth promotion by the endophytic bacterium Burkholderia phytofirmans PsJN..
FEMS Microbiology Letters
296.
131
- 136.
157. Rashid, S., Charles, TC., & Glick,BR.
((2012)).
Isolation and characterization of new plant growth-promoting bacterial endophytes..
Applied Soil Ecology
61.
217
- 224.
158. Ali, S., Charles, TC., & Glick,BR.
((2014)).
Amelioration of damages caused by high salinity stress by plant growth-promoting bacterial endophytes..
Plant Physiology and Biochemistry
80.
160
- 167.
159. Yaish, MW., Antony, I., & Glick,BR.
((2015)).
Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance..
Antonie van Leeuwenhoek
107.
1519
- 1532.
160. Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda, MC., & Glick,BR.
((2016)).
Plant growth-promoting bacterial endophytes..
Microbiological Research
183.
92
- 99.
161. Yaish, MW., Al-Harrasi, I., Alansari, AS., Al-Yahyai, R., & Glick,BR.
((2016)).
The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress..
International Microbiology
19.
143
- 155.
162. Brígido, C., Singh, S., Menendez, E., Tavares, MJ., Glick, BR., do Rosário, Félix M., Oliveira, S., & Carvalho,M.
((2019)).
Diversity and functionality of culturable endophytic bacterial communities in chickpea plants..
Plants
8.
42.
163. Brígido, C., Menendez, E., Paço, A., Glick, BR., Belo, A., Félix, MR., Oliveira, S., & Carvalho,M.
((2019)).
Mediterranean native leguminous plants: A reservoir of endophytic bacteria with potential to enhance chickpea growth under stress conditions..
Microorganisms
7.
392.
164. Gamalero, E., Favale, N., Bona, E., Novello, G., Cesaro, P., Massa, N., Glick, BR., Orozco-Mosqueda, MC., Berta, G., & Lingua,G.
((2020)).
Screening of bacterial endophytes able to promote plant growth and increase salinity tolerance..
Applied Sciences
10.
5767.
165. Adeleke, BS., Babalola, OO., & Glick,BR.
((2021)).
Plant growth-promoting root-colonizing bacterial endophytes..
Rhizosphere
20.
100433.
166. Narayanan, Z., & Glick,BR.
((2022)).
Secondary metabolites produced by plant bacterial endophytes..
Microorganisms
10.
2008.
167. Adeleke, BS., Akinola, SA., Adedayo, AA., Glick, BR., & Babalola,OO.
((2022)).
Synergistic relationship of endophyte-nanomaterials to alleviate abiotic stress in plants..
Frontiers in Environmental Science
10.
1015897.
168. Santoyo, G., Orozco-Mosqueda, MC., Gamalero, E., Bona, E., Kumar, A., & Glick,BR.
((2023)).
Hidden inside plants: Endophytic bacteria as next generation biopesticides, in: Puopolo G, Microbial Biocontrol Agents: Developing Effective Biopesticides..
182
- 201.
169. Ali, S., Duan, J., Charles, TC., & Glick,BR.
((2014)).
A bioinformatics approach to the determination of bacterial genes involved in endophytic behavior..
Journal of Theoretical Biology
343.
193
- 198.