Korean Journal of Environmental Agriculture

Korean J Environ Agric. 2017;36(4):269-278. Korean Published online 2017 November 27. https://doi.org/10.5338/KJEA.2017.36.4.33

Research Article

오비트랩 고분해능 질량분석기를 이용한 폐사 조류 중 다성분 잔류 농약 스크리닝 기법

이두희¹, 김보경¹, 왕승준², 손기동², 정현미³, 최종우^{1*}

Residual Multi Pesticides Screening of Dead Birds by Orbitrap High Resolution Mass Spectrometry

Doo-Hee Lee¹, Bo-Kyong Kim², Seung-Jun Wang², Ki-Dong Son², Hyen-Mi Jung³ and Jong-Woo Choi^{1*} (¹Environmental Measurement & Analysis Center, Environmental Infrastructure Research Department, National Institute of Environmental Research, Incheon 22689, Korea, ²Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea, ³Environmental Infrastructure Research Department, National Institute of Environmental Research, Incheon 22689, Korea)

Received: 27 September 2017/ Revised: 30 October 2017/ Accepted: 8 November 2017 Copyright © 2017 The Korean Society of Environmental Agriculture

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ORCID

Doo-Hee Lee http://orcid.org/0000-0002-3336-2222

Jona-Woo Choi http://orcid.org/0000-0003-2331-3213

Abstract

1

BACKGROUND: The objective of this study was to evaluate screening method of residual multi pesticides in dead birds by Orbitrap high resolution mass spectrometry (HRMS) to identify the cause of death for birds .

METHODS AND RESULTS: Extraction and clean-up method of residual pesticides in liver of dead birds was used QuEChERS (Quick Easy Cheap Effective Rugged and Safe) and method validations was conducted using liquid chromatography and gas chroamtography with triplequadrupole mass spectrometer (LC/MS/MS and GC/MS/ MS) Also, we were evaluated screening method for the determination of residual pesticides in liver of dead birds by LC and GC Orbitrap Mass Spectrometry. Results of method validations, Correlation coefficients of the matrix matched calibration curves were >0.978, and the method detection limits (MDLs) and limits of quantitation (LOQ) were 2.8~ 72.1 ng/g (18.4 ng/g on average) and 9.0~230 ng/g (58.5 ng/g on average). The accuracy ranged from 69.1% to 130%

*Corresponding author: Jong-Woo Choi Phone: +82-32-560-8383; Fax: +82-32-568-7905; E-mail: cjw111@korea.kr

(103% on average), and the precision values were less than 14.8% (3.8% on average). The screening of residual pesticides in liver of dead birds by LC and GC Orbitrap HRMS was detected monocrotophos, carbofuran, carbosulfan, deltametrin, benfuracarb, carbofuran, phosphamidon, prochloraz in investigated samples.

CONCLUSION: This results showed that accurate mass were extraction of residual pesticides in dead birds by Orbitrap HRMS. It suggested that this screening method is applicable to the residual pesticide analysis for the cause of death as a main tool.

Key words: Dead Birds, Orbitrap high resolution mass spectrometry, Residual pesticides, QuEChERS

(Park et al., 1998; Kwon et al., 2003)

71,(TraceFinder, MassHunter Workstation)

(MZ Cloud, Chemspider, PubChem, Metlin)7; 7; 7; (Zedda and Zwiener, 2012; Jeon *et al.*, 2016).

> 가 가가 .

가 QuEChERS

재료 및 방법

폐사 조류 시료

2017 1 5 . (Corvus fugilegus), (Hypsipetes amaurotis), (Anas platyrhynchos), (Columba livia var.

domestica) (Anser albifrons) 7

표준물질 및 시약

PAN (Pesticide Action Network) 238 (Table 1) Accustandard (USA), Sigma-Aldrich (USA), Dr. Ehrenstorfer GmBH (Germany) (Table 1). **QuEChERS** AOAC (Naacetate 1.5 g, MgSO₄ 6 g) , EMR-Lipid dSPE (Enhanced Matrix Removal-Lipid dispersive Solidphase Extraction) EMR-Lipid Final Polish (MgSO₄ 1.6 g, NaCl 0.4 g) Agilent (USA) (methanol), (acetonitrile) 3 Honeywell B&J (USA) HPLC , QuEChERS (acetic acid) LC-MS/MS LC-Orbitrap (formic acid)

(ammonium formate) Sigma-Aldrich (USA)

QuECHERS 전처리 방법

QuEChERS AOAC 2007.01

(liquid phase micro-extraction, LPME), (solid phase micro-extraction, SPME), (Stir bar sorptive extraction, SBSE), QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) (Ock, 2009). QuEChERS

가 QuEChERS

GC-ECD (electron capture detector), GC-NPD (nitrogen phosphorous detector), GC-FPD (flame photometric detector), LC-FLD (fluorescence detector) LC-UVD (UV photometric detecto) (Park *et al.*, 2014).

가

가 . LC/MS/MS GC/MS/MS 가 가 , 가 , 가 .

.

GC/MS full scan (deconvolution) (non-target) (Meng *et al.*, 2010; Shaikh *et al.*, 2014).

가

가 . Orbitrap-HRMS TOF-HRMS

(Garcia-Reyes *et al.*, 2007; Alder *et al.*, 2011; Cervera *et al.*, 2012; Huerta *et al.*, 2013; Farre *et al.*, 2014). 4 3~10 ppm (Bletsou *et al.*, 2015) 7

Classification	Residual Pesticides
Amide (18)	alachlor, bromobutide, butachlor, cyflufenamid, dichlofluanid, dimethenamid, diphenamid, fenoxanil, fentrazamide, flubendiamide, fluopicolide, fluopyram, mandipropamid, naprophamid, penthiopyrad, prochloraz, tolyfluanid, zoxamide
Anilide (9)	boscalid, flutolanil, mefenacet, mepronil, ofurace, propanil, pyrimisulfan, thifluzamide, tiadinil
Azine (9)	clofentezine, dimethametryn, metribuzine, prometryn, simazine, simetryn, tebufenozide, terbutryn, terbutylazine
Azole (27)	bitertanol, carbendazim, cyazofamid, cyproconazole, difenoconazole, diniconazole, etoxazole, fenbuconazole, fipronil, flusilazole, hexaconazole, imazalil, isopyrazam, metconazole, myclobutanil, paclobutrazol, penconazole, probenazole, propiconazole (2 isomers), tebuconazole, tebufenpyrad, tetraconazole, thiabendazole, triadimefon, tricyclazole, triflumizole, uniconazole
Benzoate (2)	pyriminobac-methyl (E), pyriminobac-methyl (Z)
Carbamate (22)	aldicarb, bendiocarb, benthiavalicarb-isopropyl, carbaryl, carbofuran, chlorpropham, esprocarb, ethiofencarb, fenobucarb, fenothiocarb, furathiocarb, iprovalicarb, isoprocarb, methiocarb, methomyl, metolcarb, molinate, oxamyl, pirimicarb, propoxur, pyributicarb, thiobencarb,
Dicarboximide (2)	fenamidone, iprodione
Dinitroaniline (2)	ethalfluralin, pendimethalin
Diphenyl ether (2)	bifenox, oxyfluorfen
Keto-enol (1)	spiromesifen
Morpholine (1)	dimethomorph
Neonicotinoid (6)	acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, thiamethoxam
Organochlorine (22)	aldrin, α -BHC, β -BHC, γ -BHC, δ -BHC, chlordane-cis, chlordane-trans, 2,4'-DDD, 4,4'-DDD, 2,4'-DDE, 4,4'-DDE, 2,4'-DDT, 4,4'-DDT, dieldrin, endosulfan sulfate, α -endosulfan, β -endosulfan, endrin, heptachlor, heptachlor epoxide, methoxychlor, methyl-pentachlorophenyl sulfide
Organophosphorus (44)	anilofos, azinphos-methyl, cadusafos, carbophenothion, chlorfenvinphos, chlorpyrifos, chlorpyrifos-methyl, diazinon, dimethoate, dimethylvinphos, edifenphos, EPN, ethion, ethoprophos, etrimfos, fenamiphos, fenitrothion, fenthion, fosthiazate, imicyafos, iprobenfos, isofenphos, malathion, mecarbam, methidathion, mevinphos, monocrotophos, parathion, parathion-methyl, phenthoate, phorate, phosalone, piperophos, pirimiphos-ethyl, pirimiphos-methyl, profenofos, prothiofos, pyraclofos, pyrazophos, pyridaphenthione, tebupirimfos, terbufos, tolclofos-methyl, tralomethrin
Phenoxy (4)	cyhalofop-butyl, diclofop methyl, fenoxaprop-p-ethyl, metamifop
phthalimide (1)	folpet
Pyrethroid (12)	acrinathrin, bifenthrin, cyfluthrin (4 isomers), cyhalothrin-L, cypermethrin , deltamethrin, fenpropathrin, fenvalerate (2 isomers), flucythrinate (2 isomers), permethrin (2 isomers), silafluofen, tefluthrin
Pyridine (2)	dithiopyr, thiazopyr
Pyrimidine (6)	cyprodinil, fenarimol, ferimzone, nuarimol, pyrimethanil, pyrimidifen
Pyrrole (2)	chlorfenapyr, fludioxonil
Quinoline (1)	pyriproxyfen
strobin (6)	azoxystrobin, fluacrypyrim, kresoxim-methyl, picoxystrobin, pyraclostrobin, trifloxystrobin,
Substituted Benzene (4)	chlorothalonil, dicloran, pentachloroaniline, quintozen
Urea (9)	chlorfluazuron, diuron, dymron, forchlorfenuron, metazosulfuron, methabenzthiazuron, metobromuron, pencycuron, triflumuron,
Xylyalanine (1)	metalaxyl
Unclassified (23)	bentazone, benzobicyclon, benzoximate, buprofezin, chinomethionat, chlorobenzilate, clomazone, dicofol, dimepiperate, diphenylamine, fenazaquin, fthalide, hexythiazox, indanofan, mepanipyrim, oxadiazon, oxaziclomefon, pyribenzoxim, pyridaben, pyroquilon, quinoclamine, sulfoxaflor, tetradifon

Table 1. Classification of residual pesticides for QA/QC

(Association of Analy	tical Communities	Official Method	1%	가	15 m	L 50 mL
2007.01, Lehotay et	al., 2007)	,	1	,	Na-a	cetate 1.5 g
	EMR	(Han <i>et al.,</i>	MgSO ₄ 6 g		가	250 rpm
2016) .		5 g	10	5,000 rpm	10	

Homogenize 1 g sample and add to 1% acetic acid ACN 15 mL in 50 mL centrifuge tube				
	- Votex for 1 min			
Add Salt (Na-acetate 1.5 g, Mg	SO ₄ 6 g) and Shaking for 2 min			
	- Centrifuge for 10 min at 5000 rpm			
Add 5 mL water, then 5 mL of the A	CN extract to a EMR-Lipid dSPE tube			
	- Votex for 1 min - Centrifuge for 10 min at 5000 rpm			
Add 5 mL of the upper ACN extract to a EM	IR-Lipid polish tube (NaCl 0.4 g, MgSO ₄ 1.6 g)			
	- Votex for 1 min and - Centrifuge for 10 min at 5000 rpm			
Transfer upper ACN la	yer to 1.5 mL glass vial			
Instrument analysis				

Fig. 1. Flow chart for residual pesticides in liver of dead birds.

Table 2.	Analytical	condition	of	LC,	/MS/M	IS for	residual	pesticides
----------	------------	-----------	----	-----	-------	--------	----------	------------

LC parameters								
Instrument	Shimadzu 8030 with	Shimadzu 8030 with Nexera UHPLC						
Column	Phenomenex Kinetix,	C18, 100 \times 2.1 m	n, 2.6 μm					
Run Time	20 min							
Injection volume	5 μL							
Oven temp.	40℃							
Mobile phase	A: 0.1% formic acid, B: 0.1% formic acid,	A: 0.1% formic acid, 5 mM ammonium formate in water B: 0.1% formic acid, 5 mM ammonium formate in methanol						
	Time (min)	A (%)	B (%)	Flow (mL/min)				
	0	95	5	0.2				
	2	95	5	0.2				
Gradient condition	7	5	95	0.2				
	11.5	5	95	0.2				
	12.5	95	5	0.2				
	15	95	5	0.2				
]	MS/MS parameters						
Ionization mode	Elect	rospray ionization	(ESI)					
Nebulizing gas flow	3 L/:	min						
DL temp.	250°C							
Heat block temp.	400°C	× /						
Drying gas flow	15 L,	/min						

1 g EMR-Lipid dSPE . 5 mL 가 vortex 2 g EMR dSPElipid kit (NaCl:MgSO₄=2:8) 1 vortex , 5 mL EMR-lipid polish kit 가 vortex (Fig. 1).

전처리 방법의 유효성 검증

238 , (method detection limit, MDL), (limit of quantification, LOQ), LC/MS/MS GC/MS/MS (Table 2, 3) 7 . 7 0.1~100 ng/mL (matrix matched standard method)

			GC par	ameters					
	Instrument	TSQ8300 EVO	TSQ8300 EVO with Trace 1310						
	Carrier gas flow	He, 1.0 mL/m	He, 1.0 mL/min						
	Column	DB-5MS (30 m	a×250 μm×0	.25 μm)					
	Injection temp.	280°C							
	Injection mode	Splitless							
	Injection volume	1 μL							
	Oven temp.	50℃ (2 min)—	→ 15°C/min	\rightarrow 140 °C (15 min	n) $\rightarrow 5^{\circ}$ C/min –	→ 300°C (10 n	nin)		
			MS/MS p	parameters					
	Ionization mode	Electron ioniza	tion (EI)						
	Multiplier voltage	1,000 V							
	Source temperature	280°C							
	Scan time	1 sec							
	Interface temp.	280°C							
	Q2 collision gas	Argon							
				×0.25 µm, J&W	V Scientific, USA	A)	. GC		
	500 ng/mL	150 µL 가			(injection mode	e) (sp	olitless)		
			,	가	He,	1.0 mL/mir	ı		
7		3.14 10			1 μL				
		2000 ng/mL	150 μ	(transfer line)	280℃		(oven)		
L		가 5		60°C	10	160℃	20℃		
	5			300℃	5℃	4			
	100	5		. GC-Orbitrag	>		(ionization		

Table 3. Analytical condition (of	GC/MS/MS	for	residual	pesticide	es
---------------------------------	----	----------	-----	----------	-----------	----

	500 ng/mL	150 μL	가	
				,
7		3.14	10	
		2000 ng/mL		150 μ
L		가 5		
	5			
100		5		
	100)		

고분해능 질량분석기 기기조건

LC-Orbitrap GC-Orbitrap . LC-Orbitrap LC Dionex Ultimate 3000-Q Q Exactive Plus Thermo Scientific (USA) Phenomenex Kinetex C18 (100×2.1 mm, 2.6 μm) 40℃ 0.1% . 가 5 mM $200 \ \mu L/min$ 2 25 0% . 100% 30 35 0% 40 . LC-Orbitrap (ionization mode) ESI (electospray 300℃ ionization) (mass resolution) 70,000 50~1000 m/z full scan ddMS2 (data dependent MS/MS) . GC-Orbitrap GC TRACE 1300 Q Exactive GC Thermo Scientific (USA) DB-5MS (30 m×250 µm .

×0.25 µm, J&W	Scientific,	USA)		. GC
	(injection m	node)	(spli	itless)
가	He,	1.0	mL/min	
	1 μL			
(transfer line)	280°C			(oven)
60℃	10		160℃	20°C
300℃	5℃	2	4	
. GC-Orbitrap	,			(ionization
mode) EI (Ele	ctron ionizat	ion)		
280℃		(mass r	resolution)	60,000
45~650 m/z	full	scan		

결과 해석

	. LC	C-Orbitrap		
accurate mass	Thermo S	Scientific	(USA)	
TraceFinder 3.3		,		
NiST	MZ	Cloud		
		MS		
,	, ddMS2			
	. GC-Obritrap	NIST		
gc-orbitrap contaminants library				
TraceFinder	4.1			

결과 및 고찰

전처리 방법 유효성 검증

QuEChERS

.

,

,

~				
Classification	MDL (ng/g)	LOQ (ng/g)	Accuracy (%)	Precision (%)
Amide (18)	19.4 (8.57~33.6)	62.1 (27.3~107)	106 (69.1~128)	3.9 (0.2~10.2)
Anilide (9)	14.8 (6.00~23.2)	47.1 (19.1~73.9)	106 (7700~122)	3.6 (1.1~7.9)
Azine (9)	11.1 (2.83~18.5)	35.2 (9.00~58.9)	114 (106~122)	3.7 (1.9~5.3)
Azole (27)	19.3 (7.16~55.3)	61.5 (22.8~176)	98.4 (77.4~122)	3.4 (0.6~14.2)
Benzoate (2)	19.4 (17.9~20.9)	61.8 (57.0~66.6)	92.9 (90.0~95.9)	6.4 (4.3~8.4)
Carbamate (22)	12.5 (4.55~40.3)	39.7 (14.5~129)	112 (91.1~125)	3.1 (0.3~6.8)
Dicarboximide (2)	14.8 (8.20~21.4)	47.1 (26.1~68.1)	118 (108~127)	4.9 (1.0~8.8)
Dinitroaniline (2)	12.9 (2.86~23.0)	41.2 (9.10~73.2)	97.6 (97.4~97.8)	2.7 (0.8~4.5)
Diphenyl ether (2)	52.0 (32.0~72.1)	165.8 (102~230)	90.4 (85.2~95.5)	10.6 (9.2~12.0)
Keto-enol (1)	12.1	38.5	114	2.2
Morpholine (1)	6.19	19.7	96.3	3.5
Neonicotinoid (6)	21.5 (15.4~27.2)	68.4 (49.0~86.6)	106 (102~118)	4.9 (1.8~14.8)
Organochlorine (22)	24.5 (7.38~71.0)	77.9 (23.5~226)	96.1 (81.0~112)	3.7 (0.4~14.8)
Organophosphorus (44)	18.4 (7.13~40.4)	58.5 (22.7~129)	105 (82.1~125)	3.7 (0.1~9.2)
Phenoxy (4)	8.99 (5.28~16.8)	28.6 (16.8~53.5)	101 (86.5~114)	2.8 (0.8~5.3)
phthalimide (1)	33.0	105.1	110	5.0
Pyrethroid (12)	21.2 (5.02~37.8)	67.6 (16.0~120)	88.7 (74.4~105)	4.4 (1.3~9.4)
Pyridine (2)	23.3 (21.9~24.7)	74.3 (69.7~77.4)	104 (103~106)	2.0 (1.0~3.0)
Pyrimidine (6)	15.7 (10.1~24.3)	50.0 (32.3~77.4)	97.8 (83.5~114)	4.2 (1.2~6.8)
Pyrrole (2)	38.5 (26.0~51.0)	122.6 (82.9~162)	93.6 (91.2~96.0)	3.3 (1.6~5.1)
Quinoline (1)	7.38	23.5	116	2.0
Strobin (6)	17.3 (12.4~25.9)	55.0 (39.6~82.5)	113 (107~120)	3.1 (0.9~5.0)
Substituted Benzene(4)	25.9 (17.6~30.3)	82.6 (56.1~96.5)	88.5 (78.6~105)	4.8 (1.2~7.0)
Urea (9)	12.8 (6.59~34.5)	40.8 (21.0~110)	113.3 (101~130)	4.7 (1.6~8.7)
Xylyalanine (1)	9.23	29.4	108	3.1
Unclassified (23)	17.3 (2.92~49.6)	54.9 (9.3~158)	104 (75.5~126.3)	3.3 (0.5~8.9)
Total	18.4 (2.8~72.1)	58.5 (9.0~230)	103 (69.1~130)	3.8 (0.1~14.8)
(238)	LC/MS/MS (139) (2017)	(: 70~	-130%, : 30%
GC/MS/MS (99)	MRM)	zoxamide (69	.1%)
1 2			. <i>,</i> El	U가 (SANCO/
	(Fig.	1). 825/00 rev.8.	1, 2010)	(: 70~120%,
, 0.1~100	g/mL	: 20%)	Cadusafos 17
$\binom{2}{2}$ 0.070,0.000			USD.	A method validation
$(\mathbf{r}) 0.978 \sim 0.999$	Table 4	\pm guideline (200)())	50%~150%,
13%	Table 4	20%)	OuFC	LEDS ADAC
	,	FMR	QueCi	ILLAS AUAC
_	28~721 ng	/σ	11	
, 9.0~230 ng/g (18.4 ng/g $58.5 ng/g$	•	(I)" (2015)	Han (2016)
	가 26		() ()	()
	69.1~130% 0.1~14.8%			

Table 4. Method detection limit (MDL), limit of quantitation (LOQ), accuracy and precision for residual pesticides by AOAC QuChERS method for liver of dead birds

 103%
 3.8%
 .
 Log Kow가 1

 가 "
 5 " PPCPs
 ,

Fig. 2. Chromatograms for residual pesticides by (A) LC/ MS/MS and (B) GC/MS/MS

Fig. 3. (A) Total ion chromatogram of residual pesticides in liver of dead birds and Tracefinder3.3 browser by LC-Orbitrap. (B) Candidate list with a library matching compound, (C) its chromatogram, (D) mass spectrum, (D) isotopes pattern of the compared with experimental and prediction, (E) datadependent MS/MS of the compared with experimental and library.

Fig. 4. (A) Total ion chromatogram of residual pesticides in liver of dead birds and Tracefinder4.1 browser by GC-Orbitrap. (B) Candidate list with a library matching compound, (C) peak identification, (D) its chromatogram and extracted ions, (E) mass spectrum of the compared with experimental and library.

Kow가 1	acephate (-0.85)	dicrotophos	Log (-0.50)			
	가	가 .		LC/MS	GC/MS	
고분해능 길 LC	일량분석기 스크니링 ⁻ GC	결과				
(target)/ (Krauss	(suspect)/ (noi <i>et al.,</i> 2010).	n-target)			m/z	
					m/z	가
가			full	, 가 (Hernández <i>et al.,</i> 2015).	
scan		m/z		가		

	Sample	Residual Pesticides
1	Corvus fugilegus	not detecting
2	Hypsipetes amaurotis1	monocrotophos
3	Anas platyrhynchos	carbofuran, carbosulfan, deltamethrin
4	Columba livia var. domestica	benfuracarb, carbofuran
5	Hypsipetes amaurotis2	carbofuran
6	Hypsipetes amaurotis3	phosphamidon
7	Anser albifrons	monocrotophos, prochloraz, fenitrothion

Table 5. Detection of residual pesticides in liver of dead birds

Orbitrap

. Fig. 3-A LC-Orbitrap

full scan ddMS2 가

m/z . 4

accurate mass TraceFinder3.3 Fig. 3-B~F . Fig. 3-B MZ Cloud , ddMS2

, NIST epitestosterone, testosterone 6.14 monoctophos monocrotophos MS ddMS2 (Fig. 3-F) ddMS2

127.0157 m/z 127.0156 m/z (exact mass accurate mass)7 -0.0001 0.79 ppm . Fig. 4 GC-Orbitrap

. LC-Orbitrap

m/z .

7 TraceFinder 4.1 700 gc-orbitrap contaminants library Fig. 4-B

monocrotophos . (Fig. 4-C) score (Fig. 4-D) (Fig. 4-E) monocrotophos

1 monocrotophos, carbofuran, carbosulfan, deltamettrin, benfuracarb, 2 3 carbofuran, carbofuran, phosphamidon, monocrotophos, prochloraz, fenitrothion (Table 5). Kim (2008)Jang (2010) 1998 2009 monocrotophos, phosphamidon, carbofuran, fenitrothion

> LC-Orbitrap GC-Orbitrap 가 가 가 가

Notes

The author declare no conflict of interest.

Acknowledgement

This work was supported by the National Institute of Environmental Research R&D (1900-1946-303-210-13) of Korea Government (NIER).

References

Alder, L., Steinborn, A., & Bergelt, S. (2011). Suitability of an orbitrap mass spectrometer for the screening of pesticide residues in extracts of fruits and vegetables. Journal of AOAC International, 94(6), 1661-1673.

Bletsou, A. A., Jeon, J., Hollender, J., Archontaki, E., & Thomaidis, N. S. (2015). Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. TrAC Trends in Analytical Chemistry, 66, 32-44.

- Cervera, M. I., Portoles, T., Pitarch, E., Beltran, J., & Hernandez, F. (2012). Application of gas chromatography time-of-flight mass spectrometry for target and non-target analysis of pesticide residues in fruits and vegetables. Journal of Chromatography A, 1244, 168-177.
- Farre, M., Pico, Y., & Barcelo, D. (2014). Application of ultra-high pressure liquid chromatography linear iontrap orbitrap to qualitative and quantitative assessment of pesticide residues. Journal of Chromatography A, 1328, 66-79.
- Garcia-Reyes, J. F., Hernando, M. D., Molina-Diaz, A., & Fernandez-Alba, A. R. (2007). Comprehensive screening of target, non-target and unknown pesticides in food by LC-TOF-MS. TrAC Trends in Analytical Chemistry, 26(8), 828-841.
- Han, L., Matarrita, J., Sapozhnikova, Y., & Lehotay, S. J. (2016). Evaluation of a recent product to remove lipids and other matrix co-extractives in the analysis of pesticide residues and environmental contaminants in foods. Journal of Chromatography A, 1449, 17-29.
- Hernández, F., Ibánez, M., Portolés, T., Cervera, M., Sancho, J. & López, F. (2015). Advancing towards universal screening for organic pollutants in waters, Journal of Hazardous Materials, 282, 86-95.
- Huerta, B., Jakimska, A., Gros, M., Rodríguez-Mozaz, S., & Barceló D. (2013). Analysis of multi-class pharmaceuticals in fish tissues by ultra-high-performance liquid chromatography tandem mass spectrometry, Journal of Chromatography A, 1288, 63-72.
- Jang, J. H., Bong, Y. H., Kim, D. G., Kim, M., Chung, G. S., & Son, S. W. (2010). Analysis of residual pesticides in dead wild birds and other animals during 2008-2009 in Korea. Korean Journal of Veterinary Research, 50(3), 197-203.
- Jeon J. H., Park, N. R., & Lee, S. H. (2016). Application of target, suspect, nontarget screening metholds based on high resolution mass spectrometry for the identification of micropollutants and their transformation products in aquatic evironments: A review. Journal of Korean Society for Environmental Analysis. 19(4), 225-245.

- Kim, M., Yun, S. J., Kim, D. G., Bong, Y. H., Kim, H. J., Jang, J. H., & Chung, G. S. (2008). Determination of pesticides in dead wild birds in Korea. Korean Journal of Veterinary Research, 48(2), 131-137.
- Krauss, M., Singer, H., & Hollender, J. (2010). LC high resolution MS in environmental analysis: from target screening to the identification of unknowns. Analytical and Bioanalytical Chemistry, 397(3), 943-951.
- Kwon, Y. K., Yun, S. J., & Kim, K. S. (2003). Parathion Poisoning in the White-napped Cranes. Korean Journal of Veterinary Public Health, 27(2), 83-88.
- Lehotay, S. J., Tully, J., Garca, A. V., Contreras, M., Mol, H., Heinke, V., Anspach, T., Lach, G., Fusseli, R., Mastovska, K., & Poulsen, M. E. (2007). Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study, Journal of AOAC International, 90(2), 485-520.
- Meng, C. K., Zweigenbaum, J., Frst, P., & Blanke, E. (2010). Finding and confirming nontargeted pesticides using GC/MS, LC/quadrupole-time-of-flight MS, and databases. Journal of AOAC International, 93(2), 703-711.
- Ock, H. S. (2009). Developmental trend of analytical methods for pesticide residues. The Korean Journal of Pesticide Science, 13(4), 336-348.
- Park, B. J, Choi, J. H., Lee, B. M., Im, G. J., Kim, C. S., & Park, K. H. (1998). Decomposition rate of iprobenfos, isoprothiolane, and diazinon by some environmental factors in aqueous. The Korean Journal of Pesticide Science, 2(2), 39-44.
- Park, J. W., Kim, A. K., Kim, J. P., Lee, H. H., Park, D. W., Moon, S. J., Jang, T. K., Ha, D. R., & Seo, K. W. (2014). Multi-residue analysis of pesticides using GC-TOF/MS, ECD, NPD with QuECHERS sample preparation. The Korean Journal of Pesticide Science, 18(4), 278-295.
- Shaikh, H., Memon, N., Bhanger, M. I., & Nizamani, S. M. (2014). GC/MS based non-target screening of organic contaminants in river Indus and its tributaries in Sindh (Pakistan). Pakistan Journal of Analytical & Environmental Chemistry, 15(1), 42-65.
- Zedda, M., & Zwiener, C. (2012). Is nontarget screening of emerging contaminants by LC-HRMS successful? A plea for comound libraries and computer tools. Analytical & Bioanalytical Chemistry, 403(9), 2493-2502.