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Abstract

BACKGROUND: Yeasts associated with fleabane flowers 
were identified using isolation methods previously applied 
in yeast biotechnology. A culture-based approach was 
required for isolation of many yeast strains associated with 
fleabane.
METHODS AND RESULTS: We spread homogenized 
fleabane flowers onto GPY medium containing 
chloramphenicol, streptomycin, Triton X-100, and L- 
sorbose. We isolated 79 yeast strains from the flowers of 
wild fleabane, and identified the yeasts via phylogenetic 
analysis of isolates from agar plates. The yeast species 
included 39 isolates of Aureobasidium pullulans, 17 of the 
genus Candida, 14 of the genus Rhodosporidium, 6 of the 
genus Cryptococcus, and 3 of the genus Rhodotorula.
CONCLUSION: Yeast isolates associated with fleabane 
flowers included A. pullulans (39 isolates) and other yeast 
species (40 isolates). Such yeast isolates may have 
biotechnological potential.
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Introduction

Erigeron annus (L.) Pers. is an annual or biennial 

herb of the Compositae, and is a North America 

native pioneer species that often colonizes disturbed 

areas such as pastures, vacant fields, roadsides, 

railways, and waste areas; the herb was introduced to 

Korea in 1910 (Park, 2009). Flowering occurs in June 

and July, cephalization is white, the ligulate flower is 

pistillate, and the tubular flower is yellow with a long 

pappus (Korea National Arboretum, 2012). The leaves 

are edible and are commonly used in folk medicine 

to treat indigestion, stomach ache, diarrhea caused by 

enteric pathogens, and hypoglycemia (Lee, 1996; Lee, 

2003; Yoo, et al., 2008). Little is known, however, 

about the ecological roles of plant yeasts.

Yeasts play roles in many complex processes of 

various ecosystems such as plant tissues (stems, 

flowers, and fruits); insects; soils; aquatic environments; 

and extreme environments (Fonseca and Inácio, 2006; 

Raspor and Zupan, 2006; Botha, 2011). Industrial 

attributes of yeasts include the primary roles they 

play in many food fermentations yielding beers, 

ciders, wines, sake, distilled spirits, bakery products, 

industrial enzymes, and agricultural products (Deak, 

2009; Tamang and Fleet, 2009). 

In this study, we characterized the yeast species 

associated with fleabane flowers. Previous studies 

have attempted to do the same, but their sampling 

strategies were casual or insufficient. Moreover, only 

minimal phylogenetic analyses of cultural yeast 

isolates have been performed in the past (Halloran et 

al., 2013); therefore, our results provide a basis for 
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future studies on yeast biotechnology.  

Materials and Methods

Yeast isolation

Erigeron annus (L.) Pers. samples were aseptically 

collected from a residential area in Uljin with the aid 

of autoclaved scissors and forceps, and placed in 

clean plastic bags. Flower samples were stored in a 

cooler during transfer to the laboratory (in Uljin) and 

processed the same day. Each sample was washed 

three times with 10 mM potassium phosphate buffer 

and stored in an autoclaved container. Several 

washed flower samples were placed in tubes (Falcon 

Plastics, Los Angeles, CA, USA) filled to 10 mL with 

10 mM potassium phosphate buffer and homogenized 

using an autoclavable hand homogenizer (T10 Basis; 

IKA, Staufen, Germany). Homogenized samples (1 

mL) were placed on sterile solid media, plated using 

a glass spreader, and incubated at 25°oC for 2-5 days. 

Yeast colonies that grew on large plates (Nunc Bio- 

assay dishes, 245 × 245 × 25 mm, Thermo Scientific, 

Roskilde, Denmark) were selected with autoclaved 

toothpicks and inoculated into 96-deep-well plates 

(Assay Block, 2 mL/well, 96 well square v-bottom; 

Costar, Cambridge, MA, USA) prior to liquid culture 

at 25°C at 800 rpm for 48 hours (Choi et al., 2013).

The media used for screening included (all % 

values are w/w): dichloran-glycerol 18% (DG18) agar 

(MB Cell, Seoul, Korea); dropout base (DOB) with 

complete amino acid supplement mixture (CSM) agar 

(MP Bio, Santa Ana, CA, USA); GPY agar (4% 

glucose, 0.5% peptone, 0.5% yeast extract, and 1.5% 

agar); and Sabouraud chloramphenicol gentamicin 

(SCG) agar (MB Cell). Antibiotics (100 mg/L of both 

chloramphenicol and streptomycin) were added to 

each medium to repress bacterial growth, and 0.1% 

(v/v) Triton X-100 and 0.4% (w/v) L-sorbose were 

added to repress fungal growth. Yeasts were cultured 

on DG18, DOB with CSM, GPY, and SCG agar media 

in square plates (245 × 245 × 25 mm). All colonies 

from plates yielding multiple colonies were picked 

and cultured separately. In total, 79 individual 

isolates were transferred to fresh plates three times 

and then processed for sequencing of the internal 

transcribed spacer (ITS) genes. 

Sequencing and phylogenetic analysis

The detailed methodology of sequencing and 

phylogenetic analysis has been previously published 

(Choi et al., 2013). The primer set used to amplify ITS 

genes from the yeast strains were the previously 

described ITS1 (5′-TCCGTAGGTGAACCTGCG-3′) and 

ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) primers 

(White et al., 1990). For polymerase chain reaction 

(PCR), DNA was extracted from yeast colonies growing 

on agar plates using the Instagene Matrix method, 

according to the manufacturer’s protocol (Bio-Rad 

Laboratories, Hercules, CA, USA).

PCR was performed with 20 ng genomic DNA as 

template in a 30-μL reaction volume containing 

EF-Taq DNA polymerase (Solgent, Daejeon, Korea). 

The PCR program included the following steps: 95oC 

for 5 minutes; followed by 35 cycles of 95oC for 2 

minutes, 55oC for 60 s, and 72oC for 60 seconds; and 

a final extension step for 10 min at 72oC. Amplification 

products were purified using a multiscreen filter plate 

(Millipore Corp., Bedford, MA, USA). Sequencing was 

performed using a PRISM BigDye Terminator v3.1 

Cycle Sequencing Kit (Applied Biosystems, Foster 

City, CA, USA). Hi-Di formamide (Applied Biosystems) 

was added to DNA samples containing the extension 

products. The mixtures were incubated at 95oC for 5 

minutes followed by 5 minutes on ice, and analyzed 

on an ABI Prism 3730XL DNA Analyzer (Applied 

Biosystems). DNA sequencing was performed by 

Macrogen Inc. (Seoul, Korea). Nucleotide sequences 

for the 79 isolates reported in this paper were 

deposited in DDBJ(DNA Data Bank of Japan)/ 

GenBank under the following accession numbers: 

LC018741-LC018819.

Phylogenetic analysis of Aureobasidium pullulans 

interspecies

The nucleotide sequences of the ITS genes were 

aligned using the ClustalW2 program of the EMBL-EBI 

website. A BLAST search was used to identify the 

GenBank sequences most closely related to those of 

the yeast isolates. Phylogenetic trees were constructed 

using the neighbor-joining method, using MEGA5 for 

Windows (Tamura et al., 2011), and featured bootstrap 

analyses of 1,000 samples. Evolutionary distances were 

calculated using the Kimura two-parameter method 

(Saitou and Nei, 1987). 

Results and Discussion

Here, yeast isolates colonizing fleabane flowers 

were isolated and phylogenetically analyzed. Seventy- 

nine strains from whole yeast isolates were identified 
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Fig. 1. (A) Pi chart, and (B) a phylogenetic tree of yeast isolates from flowers of the wild fleabane Erigeron annus (L.) 
Pers., based on internal transcribed spacer sequences. Strains described in the present study are in bold font. The 
numerals are the confidence levels derived from 1,000 replicate bootstrap samplings.
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Fig. 2. Aureobasidium pullulans interspecies. A neighbor-joining tree of A. pullulans isolates from flowers of the wild
fleabane Erigeron annus (L.) Pers., based on internal transcribed spacer sequences. Strains described in the present study
are in bold font. The numerals are the confidence levels derived from 1,000 replicate bootstrap samplings.

from a single plate of homogenized flower samples. 

The strains included, A. pullulans (39 isolates), 

Candida (17 isolates), Rhodosporidium (14 isolates), 

Cryptococcus (6 isolates), and Rhodotorula (3 isolates) 

(Fig. 1). Shown in Fig. 1 is a summary phylogram of 

the yeast isolates. A. pullulans, Candida spp., and 

Rhodosporidium spp. dominated the yeast composition 

of the plant flower, representing 49%, 21%, and 18% 

of the isolates, respectively. The least abundant yeasts 

were Cryptococcus spp. (8%) and Rhodotorula spp. 

(4%). Among the isolates were several species, 

including C. tropicalis (11 isolates), C. parapsilosis (6 

isolates), Rhodosporidium azoricum (13 isolates), and 

R. fluvial (1 isolate) for which there was little prior 

knowledge regarding their habitat and function 

(Käppeli and Fiechter, 1977). Karatay and Dönmez 

(2010) showed that C. tropicalis and R. mucilaginosa 

produce biodiesel in media containing molasses, 

while Rhodosporidium isolates were also shown to 

produce biodiesel in a snow crab study (unpublished 

data). As shown in Fig. 1, this is the first yeast 

composition to be defined in fleabane flowers. 

Specially, five genera colonized the flowers, and 

future studies should explore community structure. In 

addition, A. pullulans, Candida, and Rhodosporidium 

were major colonizers, suggesting that yeast strains 

may be plant-specific. 

Based on BLAST searches and phylogenetic analyses, 



Kim et al.242

we found several interspecies of A. pullulans (Fig. 2). 

A. pullulans is known as black yeast because it 

produces melanin. Previous data showed that this 

yeast is the dominant species on the flower, leaf and 

stem of tiger lily, covering 97%, 35%, and 42% of each 

of these surfaces, respectively (Kim and Kim, 2015). To 

identify species and/or interspecies, deep-clade 

phylogenetic analyses of the A. pullulans isolates was 

performed, revealing that the yeast strains were most 

closely related to Group I (37 isolates) and Group II (2 

isolates), while none belonged to Groups III or IV. In 

Group I, isolate F-97 was separated from the rest of 

the group. Isolates F-3 through F-99 and the remaining 

25 isolates were not related to Group I. Generally, A. 

pullulans produces polysaccharides, including pullulan 

and β-glucan, which find industrial and medical 

applications (Yurlova and de Hoog, 1997; Cheng et al., 

2011; Muramatsu et al., 2012). Recently, A. pullulans 

has been shown to produce (poly)malic acid (Nagata 

et al., 1993), lipase (Leathers et al., 2013), laccase (Rich 

et al., 2011), mannitol oils (Price et al., 2013), biocontrol 

agents (Mari et al., 2012), biosurfactants (Kim et al., 

2015), valuable lipids (Turk et al., 2004), and 

siderophores (Ma et al., 2012). A. pullulans from plant 

flowers have also been found to produce several 

biosurfactants, depending on their phylogenetic class 

(unpublished data). 

The present study identified the main yeast isolates 

from fleabane, including a phylogenetic assessment of 

the A. pullulans isolates. However, the roles played 

by yeasts (including A. pullulans) in host plants still 

require further exploration. Future studies should 

address the distribution of yeast communities using 

an extensive sampling strategy for more robust group 

assessments.
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