Effect of EFD-1 and PC-10 deicers on Growth of Wheat, Barley and Spinach

Dae-Weon Lee 1*
(1Department of Biology, Colleges of Science, Kyung Sung University, Busan 603-786, Korea)

Abstract

BACKGROUND: During the winter, the use of deicers was rapidly increased for reduction of traffic accidents as well as injuries in Korea, whose components are largely comprised of calcium chloride and sodium chloride. Recently, to reduce the adverse effects of chloride-deicers such as pollution of water and soil, and decrease of agricultural productivity, the attention of eco-friendly deicers have been increased. This study aimed to investigate biological effects of magnesium chloride deicer (PC-10) and organic acid deicer (EFD-1) against wheat, barley, and spinach.

METHODS AND RESULTS: We examined the effect of two deicers, PC-10 and EFD-1 on the seed germination and growth of wheat, barley and spinach. EFD-1 showed higher suppression of the germination than PC-10 among tested crop seeds. In damage index of the seedlings of the crops, there was no symptoms in spinach such as spotting and color change of leaves. EFD-1 showed much stronger inhibitory effect on the germination of tested crop seeds than PC-10 when crops were exposed continuously to tested deicers in soils. The growth and shoot and root in examined crops was relatively higher in PC-10 treatment than in EFD-1 treatment when compared to the control. The biomass decrease was found in all examined conditions of deicers. PC-10 showed 23-35% reduction of biomass whereas EFD-1 exhibited 39-84% loss in all examined crops at over 2% concentration.

CONCLUSION: These results suggest that the effects of deicers used in this study by inputting into soil against growing tested crops cause the reduction of germination of seeds, growth, and biomass compared to the control.

Key words: Crops, Deicers, Germination, Seedling

서 론

동절기 예상치 못한 폭설과 강추위 등의 기상변화가 빈번히 일어나고 있고, 이러한 기상현상은 우리나라에도 예외는 아니다. 특히 동절기 강설에 의한 교통흐름지연, 시간손실, 물류지연 등의 경제적 손실은 국가의 경제발전에 장해가 되고 있다. 따라서 효과적인 제설을 통한 경제적 손실의 최소화가 매우 중요하다고 볼 수 있다. 전세계적으로 주로 사용되고 있는 제설제로는 염화칼슘과 염화나트륨이 있으며, 제설제의 효과를 증대시키기 위해, 이들 염화물계 제설제를 병합사용하기도 한다. 그러나 적설량이 3센티미터 이상인 경우에는 염화물계 제설제로는 충분한 효과를 보지 못하기 때문에, 마찰력을 부여하기 위해 모래를 섞어 사용하기도 한다. 이러한 병합
사용은 사용 초기 매우 높은 제설효과 및 미끄럼 방지효과를 거두므로 사고예방에 도움을 줄 수 있으나, 모래의 분쇄에 의한 미세먼지 증가와 배수로 등을 막을 수 있기 때문에, 오히려 처리비용이 더 증가하기도 한다. 특히, 고도화된 염소이온의 유입은 수자생태계 오염과 식수자원의 오염을 불러일으키며, 도로유입의 식물뿌리에 흡수되어, 식물의 발아, 성장 등에 영향을 미칠 수 있다(Gibbs and Burdeki, 1983; Viskari and Karenlampi, 2000; Bryson and Barker, 2002; Kim and Lee, 2014).

위에서 언급한 부작용들을 대체하기 위해 1980년에 대체제로 calcium magnesium acetate (CMA)가 개발되었다. CMA는 염화물계 제설제가 안고 있던 콘크리트 구조물의 부식과 자동차의 부식에 대한 문제점 저감하는 효과가 있는 것으로 입증되었다(Salcedo and Jensen, 1987). CMA의 비어린 저감효과에도 불구하고 염화물계 제설제보다 높은 생산비는 상용화에 큰 걸림돌로 지적되었다. 이에 따라 처리비용을 감소하기 위해, 칼슘, 마그네슘을 주성분으로 하는 유기산 제설제로의 전환을 시도하였다. 특히, 칼슘, 마그네슘을 주성분으로 하는 제설제로의 전환은 식물분해성 저감효과가 있는 것으로 입증되었다(Lee et al., 2004, 2014). 또한, 유기산 제설제는 식물의 영양원으로서 활용가능하기 때문에 도로주변의 작물이나 가로수에 영향을 주지 않은 신개념의 제설제로 각광받고 있다.

재료 및 방법

제설제 시료
본 연구에 사용된 염화마그네슘 계열의 PC-10 (성보화학, 한국)은 내구성 및 저유형성의 특성을 보유하여 도로와 건설현장에서 주로 사용되는 물질이다. EFD-1은 칼슘, 마그네슘, 염소이온을 포함하여, 합석제물 (Magnesium Chloride Hexahydrate)를 혼합한 제설제로 알려져 있으며, 초산 기반의 EFD-1(37.9% KOH, 27.9% Acetic acid, 19.0% propionic acid, 10.4% NaCl, 4.8% Water)을 준비하고 작물영향성 평가에 사용하였다.

제설제의 작물발아에 미치는 영향
제설제의 작물발아에 미치는 영향은 경상으로 제설제가 처리된 후, 비료나 자동차로 인한 물 튀김 현상으로 작물에 분무되었을 때 나타나는 영향을 평가하기 위해 이뤄졌다. 각 작물은 포트(경경 6.5/8 cm)에 7일 동안 발아도록 하였다. 또한, 각 작물은 경경 6.5/8 cm에 7일 동안 발아된 후, 폐기물 활용제설제로의 전환을 주목하였다. EFD-1, PC-10의 자작면은 경경 6.5/8 cm에 1, 2, 3, 5%의 농도로 희석한 후, 대조군 및 실험군으로 분류하여 각 평가 대상 작물의 종자를 50개씩 계산하여 각 실험군에 분배하였다. 실험군의 경우는 4회 반복시행하였다. 실험군의 경우는 4회 반복시행하였다. 실험군의 경우는 4회 반복시행하였다. 실험군의 경우는 4회 반복시행하였다.

토양 내 유입된 제설제가 작물 발아 및 생장에 미치는 영향
본 시험은 작물의 노지에서 자라고 있을 때 주변 도로에 제설제가 처리된 후, 비료나 자동차로 인한 물 튀김 현상으로 작물에 분무되었을 때 나타나는 영향을 평가하기 위해 이뤄졌다. 각 작물은 경경 6.5/8 cm에 7일 동안 발아된 후, 폐기물 활용제설제로의 전환을 주목하였다. EFD-1, PC-10의 자작면은 경경 6.5/8 cm에 1, 2, 3, 5%의 농도로 희석한 후, 대조군 및 실험군으로 분류하여 각 평가 대상 작물의 종자를 50개씩 계산하여 각 실험군에 분배하였다. 실험군의 경우는 4회 반복시행하였다. 실험군의 경우는 4회 반복시행하였다. 실험군의 경우는 4회 반복시행하였다. 실험군의 경우는 4회 반복시행하였다.
결과 및 고찰

제설제 처리에 대한 조사작물의 발아율

백중밀 종자 발아는 시험제설제 노출 4일까지는 2종의 제설제 모두 영향을 미치는 것으로 나타났는데, 전체적으로 농도가 높아짐에 따라 발아율이 줄어드는 농도 의존적인 경향을 보였다(Table 1). PC-10 1% 농도는 5일 이후부터는 무처리구와 비슷한 발아율을 보였다. 하지만 2% 이상의 농도 수준에서는 발아율은 현저하게 감소하는 경향을 보였고, 5% 고농도에서는 무처리구에 비해 발아가 절반정도 일어나는 것으로 나타났다. 반면 EFD-1은 준비한 1~5%에서는 발아가 전혀 일어나지 않았고, 실험한 0.1%의 저농도에서도 51%의 발아율을 보였고, 0.2%에서는 39%로 발아율이 크게 감소하는 경향을 보였다(Table 1).

서둔찰보리 종자 발아에 있어 시험제설제들은 백중밀 발아에 미치는 영향과 비슷한 양상을 띠었다. PC-10 1%는 처리 4일까지 발아율이 더디게 이뤄지다가 5일 이후부터는 발아율이 증가하여 무처리구와 비슷한 발아 특성을 보였다(Table 2). 처리 7일 후, 2%와 3% 처리구에서 서둔찰보리 종자 발아율은 각각 63%와 48%를 보였으며, 무처리구 88%에 비해 발아율이 영향을 받는 것으로 나타났다. 5% 농도에서는 발아율이 30%로 크게 영향을 받았다. EFD-1은

<table>
<thead>
<tr>
<th>Material</th>
<th>Conc. (%)</th>
<th>1 DAT</th>
<th>2 DAT</th>
<th>3 DAT</th>
<th>4 DAT</th>
<th>5 DAT</th>
<th>6 DAT</th>
<th>7 DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFD-1</td>
<td>0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
<td>10.0±0.0</td>
</tr>
<tr>
<td>PC-10</td>
<td>0</td>
<td>13.0±2.4</td>
<td>16.0±2.4</td>
<td>19.0±2.4</td>
<td>22.0±2.4</td>
<td>25.0±2.4</td>
<td>28.0±2.4</td>
<td>31.0±2.4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>16.0±2.4</td>
<td>19.0±2.4</td>
<td>22.0±2.4</td>
<td>25.0±2.4</td>
<td>28.0±2.4</td>
<td>31.0±2.4</td>
<td>34.0±2.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>19.0±2.4</td>
<td>22.0±2.4</td>
<td>25.0±2.4</td>
<td>28.0±2.4</td>
<td>31.0±2.4</td>
<td>34.0±2.4</td>
<td>37.0±2.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>22.0±2.4</td>
<td>25.0±2.4</td>
<td>28.0±2.4</td>
<td>31.0±2.4</td>
<td>34.0±2.4</td>
<td>37.0±2.4</td>
<td>40.0±2.4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>25.0±2.4</td>
<td>28.0±2.4</td>
<td>31.0±2.4</td>
<td>34.0±2.4</td>
<td>37.0±2.4</td>
<td>40.0±2.4</td>
<td>43.0±2.4</td>
</tr>
</tbody>
</table>

Table 1. The effect of deicers against the germination of wheat seeds (n=3)

Table 2. The effect of deicers against the germination of barley seeds (n=3)
Table 3. The effect of deicers against the germination of spinach seeds (n=3)

<table>
<thead>
<tr>
<th>Conc. (%)</th>
<th>Material</th>
<th>Mean±SE, %</th>
<th>1 DAT</th>
<th>2 DAT</th>
<th>3 DAT</th>
<th>4 DAT</th>
<th>5 DAT</th>
<th>6 DAT</th>
<th>7 DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0</td>
<td>EFD-1</td>
<td>17.0±2.0 a</td>
<td>31.0±3.1 a</td>
<td>44.0±2.4 a</td>
<td>47.0±4.8 a</td>
<td>60.0±3.5 a</td>
<td>65.0±4.2 a</td>
<td>77.0±2.5 a</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>EFD-1</td>
<td>7.0±1.3 bc</td>
<td>25.0±1.8 a</td>
<td>39.0±1.8 ab</td>
<td>50.0±1.2 a</td>
<td>54.0±2.4 ab</td>
<td>62.0±2.0 a</td>
<td>71.0±1.8 b</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>EFD-1</td>
<td>3.0±0.7 c</td>
<td>13.0±2.7 bc</td>
<td>27.0±5.7 bc</td>
<td>37.0±2.9 b</td>
<td>43.0±2.9 bc</td>
<td>47.0±3.5 b</td>
<td>52.0±1.2 c</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>PC-10</td>
<td>0.0±0.0 c</td>
<td>2.0±0.0 def</td>
<td>8.0±1.2 de</td>
<td>13.0±2.7 de</td>
<td>25.0±2.9 d</td>
<td>30.0±3.1 cd</td>
<td>36.0±2.3 d</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PC-10</td>
<td>0.0±0.0 c</td>
<td>1.0±0.4 ef</td>
<td>2.0±0.8 e</td>
<td>4.0±1.4 ef</td>
<td>6.0±1.6 ef</td>
<td>9.0±1.5 ef</td>
<td>15.0±4.0 e</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PC-10</td>
<td>0.0±0.0 c</td>
<td>0.0±0.0 f</td>
<td>0.0±0.0 e</td>
<td>0.0±0.0 f</td>
<td>0.0±0.0 f</td>
<td>2.0±1.2 f</td>
<td>3.0±2.4 f</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PC-10</td>
<td>0.0±0.0 c</td>
<td>0.0±0.0 f</td>
<td>0.0±0.0 e</td>
<td>0.0±0.0 f</td>
<td>0.0±0.0 f</td>
<td>0.0±0.0 f</td>
<td>0.0±0.0 f</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PC-10</td>
<td>0.0±0.0 c</td>
<td>0.0±0.0 f</td>
<td>0.0±0.0 e</td>
<td>0.0±0.0 f</td>
<td>0.0±0.0 f</td>
<td>0.0±0.0 f</td>
<td>0.0±0.0 f</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>EFD-1</td>
<td>19.0±1.8 a</td>
<td>36.0±4.6 a</td>
<td>45.0±3.7 a</td>
<td>40.0±8.1 a</td>
<td>54.0±5.0 ab</td>
<td>57.0±4.4 a</td>
<td>72.0±2.3 ab</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EFD-1</td>
<td>13.0±1.3 ab</td>
<td>22.0±1.2 ab</td>
<td>34.0±2.0 ab</td>
<td>36.0±4.0 b</td>
<td>46.0±3.1 bc</td>
<td>48.0±3.1 b</td>
<td>50.0±2.0 c</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EFD-1</td>
<td>5.0±1.8 c</td>
<td>12.0±3.1 bcd</td>
<td>29.0±2.4 abcd</td>
<td>31.0±0.7 bc</td>
<td>39.0±1.8 c</td>
<td>37.0±2.9 bc</td>
<td>39.0±1.8 d</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EFD-1</td>
<td>3.0±1.3 c</td>
<td>11.0±2.9 cde</td>
<td>18.0±1.2 cd</td>
<td>22.0±2.1 cd</td>
<td>27.0±1.8 d</td>
<td>30.0±1.2 dc</td>
<td>31.0±1.3 de</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EFD-1</td>
<td>1.0±0.7 c</td>
<td>9.0±2.9 cdef</td>
<td>9.0±3.7 de</td>
<td>13.0±1.8 de</td>
<td>19.0±0.7 de</td>
<td>24.0±2.3 de</td>
<td>26.0±1.2 e</td>
<td></td>
</tr>
</tbody>
</table>

The damage index of tested crops by deicers was based on the Korean Pesticide Control Act. 0, no damage; 1, slightly weak spot or the change of leaf color is observed, but not different from control; 2, spot, the change of leaf color or the elongation inhibition of leaf is slightly observed but there is no effect on the growth of an exposed crop after rapid recovering; and 3, spot, the change of leaf color or the elongation inhibition of leaf is distinctly observed but when we expect that there is no effect on the gross production of an exposed crop.

Table 4. The damage index of wheat, barley and spinach seedling exposed to the mist of deicers (n=3)

<table>
<thead>
<tr>
<th>Conc. (%)</th>
<th>Material</th>
<th>0.0±0.0 c</th>
<th>1.0±0.0 cd</th>
<th>0.0±0.0 a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PC-10</td>
<td>0.0±0.0 c</td>
<td>1.0±0.0 cd</td>
<td>0.0±0.0 a</td>
</tr>
<tr>
<td>1</td>
<td>PC-10</td>
<td>1.3±0.2 ab</td>
<td>1.3±0.2 cd</td>
<td>0.0±0.0 a</td>
</tr>
<tr>
<td>2</td>
<td>PC-10</td>
<td>1.5±0.3 ab</td>
<td>1.8±0.2 ab</td>
<td>0.0±0.0 a</td>
</tr>
<tr>
<td>3</td>
<td>PC-10</td>
<td>2.0±0.0 a</td>
<td>2.0±0.0 a</td>
<td>0.0±0.0 a</td>
</tr>
<tr>
<td>5</td>
<td>PC-10</td>
<td>2.0±0.0 a</td>
<td>2.0±0.0 a</td>
<td>0.0±0.0 a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conc. (%)</th>
<th>Material</th>
<th>0.0±0.0 c</th>
<th>1.0±0.0 cd</th>
<th>0.0±0.0 a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EFD-1</td>
<td>0.0±0.0 c</td>
<td>1.0±0.0 cd</td>
<td>0.0±0.0 a</td>
</tr>
<tr>
<td>1</td>
<td>EFD-1</td>
<td>2.0±0.0 a</td>
<td>2.0±0.0 a</td>
<td>0.0±0.0 a</td>
</tr>
<tr>
<td>2</td>
<td>EFD-1</td>
<td>2.0±0.0 a</td>
<td>2.0±0.0 a</td>
<td>0.0±0.0 a</td>
</tr>
<tr>
<td>3</td>
<td>EFD-1</td>
<td>2.0±0.0 a</td>
<td>2.0±0.0 a</td>
<td>0.0±0.0 a</td>
</tr>
<tr>
<td>5</td>
<td>EFD-1</td>
<td>2.0±0.0 a</td>
<td>2.0±0.0 a</td>
<td>0.0±0.0 a</td>
</tr>
</tbody>
</table>

* The damage index of tested crops by deicers was based on the Korean Pesticide Control Act. 0, no damage; 1, slightly weak spot or the change of leaf color is observed, but not different from control; 2, spot, the change of leaf color or the elongation inhibition of leaf is slightly observed but there is no effect on the growth of an exposed crop after rapid recovering; and 3, spot, the change of leaf color or the elongation inhibition of leaf is distinctly observed but when we expect that there is no effect on the gross production of an exposed crop.

백종밀 발아양상과 비슷하게 1～5% 농도에서는 발아가 전혀 일어나지 못했다. 저농도 수준인 0.1, 0.2, 0.5% 농도에서 7일 후 발아율은 각각 51, 35, 22%로 백종밀 발아율과 비슷한 경향을 나타냈다(Table 2).

시금치 종자의 발아는 농도의존적으로 발아율이 영향을 받았지만, 밀이나 보리 종자에 비해 상대적으로 시험제설제들에 노출해 약한 특성을 보였다. 백종밀 발아율과 비슷하게 1～5% 농도에서는 발아가 전히 일어나지 못했다. 저농도 수준인 0.1, 0.2, 0.5% 농도에서 7일 후 발아율은 각각 51, 35, 22%로 백종밀 발아율과 비슷한 경향을 나타냈다. PC-10 1, 2, 3, 5% 처리구들은 처리 7일 후, 각각 50, 39, 31, 26%의 발아율을 보여 무처리군 발아율 72%에 비해 영향을 받는 것으로 나타났다. 상기 농도에서 EFD-1 처리구들의 시금치 종자 발아율은 15, 5, 3, 0%로 강하게 영향을 받았으며, 0.1%의 저농도처리에서는 무처리구와 비슷한 71% 발아율을 나타냈다. 0.2%와 0.5% 처리구들 역시 발아에 영향을 미치 52%와 36%의 발아율을 보였다. 이상의 결과를 종합해 보면, 시험에 이뤄진 PC-10과 EFD-1 제설제들은 밀, 보리, 시금치 종자 발아에 있어, EFD-1이 상대적으로 작물발아에 강한 영향을 미쳤다. 하지만 PC-10도 2% 이상의 고농도에서는 시험 작물들의 종자 발아에 큰 영향을 미치는 것으로 보인다. 이상의 결과는 유기산화물질로 만든 인위적인 제설제가 작물발아에 큰 영향을 미치다는 보고(Shin et al., 2010)와 일치한다.

제설제가 작물생육에 미치는 영향
제설제가 실제 노지에서 자라고 있는 작물들에 영향을 미치게 되면, 작물의 성장과수확이 제한될 수 있으며, 이로 인해uil 수확량이 감소할 수 있다. 또한, 전통적 제설제가 사용되는 경우, 일부 작물에 대한 주요 보호작물과의 갈등을 초래할 수 있다. 이로 인해 제설제의 사용에 대한 안전성과 작물의 영향에 대한 전문가들의 연구가 필요하다. 제설제가 작물생육에 미치는 영향을 연구함으로써, 제설제 사용 시 기후와 작물의 특성을 고려한 적당한 제설제 투여タイミング를 결정할 수 있다.
Table 5. The effect of deicers in soil against the germination of wheat, barley and spinach seeds (n=3)

<table>
<thead>
<tr>
<th>Material</th>
<th>Conc. (%)</th>
<th>1DAT</th>
<th>2DAT</th>
<th>3DAT</th>
<th>5DAT</th>
<th>10DAT</th>
<th>15DAT</th>
<th>20DAT</th>
<th>25DAT</th>
<th>30DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFD-1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.0±0.0c</td>
<td>0.0±0.0d</td>
<td>0.0±0.0b</td>
<td>5.0±2.9cd</td>
<td>7.5±4.8de</td>
<td>3.8±1.0c</td>
<td>27.5±8.5cd</td>
<td>42.5±10.3abc</td>
<td>11.3±1.3c</td>
<td>60.0±7.1abcd</td>
</tr>
<tr>
<td>2</td>
<td>0.0±0.0c</td>
<td>0.0±0.0d</td>
<td>0.0±0.0b</td>
<td>5.0±2.9cd</td>
<td>7.5±4.8de</td>
<td>3.8±1.0c</td>
<td>27.5±8.5cd</td>
<td>42.5±10.3abc</td>
<td>11.3±1.3c</td>
<td>60.0±7.1abcd</td>
</tr>
<tr>
<td>3</td>
<td>0.0±0.0c</td>
<td>0.0±0.0d</td>
<td>0.0±0.0b</td>
<td>5.0±2.9cd</td>
<td>7.5±4.8de</td>
<td>3.8±1.0c</td>
<td>27.5±8.5cd</td>
<td>42.5±10.3abc</td>
<td>11.3±1.3c</td>
<td>60.0±7.1abcd</td>
</tr>
<tr>
<td>5</td>
<td>0.0±0.0c</td>
<td>0.0±0.0d</td>
<td>0.0±0.0b</td>
<td>5.0±2.9cd</td>
<td>7.5±4.8de</td>
<td>3.8±1.0c</td>
<td>27.5±8.5cd</td>
<td>42.5±10.3abc</td>
<td>11.3±1.3c</td>
<td>60.0±7.1abcd</td>
</tr>
</tbody>
</table>

*1DAT, days after treatment

W, wheat (Triticum aestivum L.); B, barley (Hordeum vulgare var. hordeum (L.) Ach.); and S, Spinach (Spinacia oleracea L.).

 Perez et al. (2010, 2011) showed that the effect of EFD-1 and PC-10 deicers on growth of wheat, barley and spinach was different. EFD-1 had a greater effect on the growth of barley compared to PC-10. PC-10 had a greater effect on the growth of spinach compared to EFD-1. The results of this study suggest that EFD-1 and PC-10 are effective deicers for improving the growth of wheat, barley and spinach in cold environments.
Fig. 1. Inside view of the kale greenhouse before (left) and after (right) supplementary radiation provided by three wave lamps, sodium lamps, and red LEDs.

The length of the shoot and root of wheat (A), barley (B), and spinach (C) exposed to deicers in soil at 30 days after treatment. The asterisk indicates statistically significant difference from the control (n=3).

Fig. 2. The length of the shoot and root of wheat (A), barley (B), and spinach (C) exposed to deicers in soil at 30 days after treatment. The asterisk indicates statistically significant difference from the control (n=3).
Fig. 3. Biomass of wheat (A), barley (B), and spinach (C) exposed to deicers in soil at 30 days after treatment. The asterisk statistically significant difference from the control (n=3).

달라지기 때문에, 작물에서 이온선택성은 염스트레스의 종류에 따라 달라질 수 있고, 이에 대한 작물의 생장에 영향 줄 수 있고(Wilson et al., 2000). 염분에 대한 내성 범위를 벗어나게 되면 생장, 생체량 감소 등이 관찰되다고 보고와 일치한다(Taiz and Zeiger, 2002).

이상의 결과를 요약하면, 제설제인 PC-10은 EFD-1에 비해서 상대적으로 작물의 발아와 생장 면에서 영향을 덜 주는 것을 확인하였다. 하지만 제설제의 토양잔류와 지속적 노출은 공극적으로 작물의 발아 및 생장, 생체량 등에 영향을 주기 때문에, 제설제의 사용시 작물의 특성을 고려한 적절한 방법이 개발되어야 할 것이다.

요 약

동절기에 특성 등의 기상변화로 인해 제설제의 사용이 증가하고 있고, 교통사고의 예방과 안전 순서로 최소화하기 위해 사용되었다. 제설제의 주성분으로는 염화칼슘과 염화나트륨이 있다. 최근에 수질오염, 농업생산성 감소 등의 염화물계 제설제의 부작용을 저감하기 위해 대체 제설제에 대한 관심이 높아지고 있다. 본 연구는 밀, 보리, 시금치에 대해 PC-10과 EFD-1 제설제를 사용하여 보리, 밀, 시금치의 생장과 발아, 생체량을 조사하였다. EFD-1은 조사작물에 대해 PC-10보다 발아억제가 더 강하였다. 제설제 영향에 대한 관능조사에서 시금치는 다른 작물에 비해 크게 영향을 받지 않았다. 토양 내 제설제 전류조건에서 EFD-1은 PC-10에 비해 발아억제효과가 높았다. 조사작물의 증기 및 부리 생성은 EFD-1처리구보다 PC-10 처리구가 대조구와 비교하였을 때 상대적으로 양호하였고, 제설제의 처리구는 생체량 측정에서 조사작물 모두에서 대조구에 비해 낮았으며, 2% 이상의 처리농도에서 PC-10은 23-35%, EFD-1은 39-84%의 생체량 감소율을 보였다. 이상의 결과들은 대체제설제인 PC-10이 EFD-1 비해 조사작물들의 발아, 생장, 생체량 감소에 영향을 덜 주는 것으로 판단된다.

Acknowledgment

This research was supported by Kyungsung University Research Grants in 2012.

References


as an indicator of deicing salt use—a comparative study among two consecutive winters. Water, Air, & Soil Pollution, 122(3-4), 405-409.